Robust and highly accurate localization using a camera is a challenging task when appearance varies significantly. In indoor environments, changes in illumination and object occlusion can have a significant impact on visual localization. In this paper, we propose a visual localization method based on an ellipse-ellipsoid model, combined with object-level instance topology and alignment. First, we develop a CNN-based (Convolutional Neural Network) ellipse prediction network, DEllipse-Net, which integrates depth information with RGB data to estimate the projection of ellipsoids onto images. Second, we model environments using 3D (Three-dimensional) ellipsoids, instance topology, and ellipsoid descriptors. Finally, the detected ellipses are aligned with the ellipsoids in the environment through semantic object association, and 6-DoF (Degree of Freedom) pose estimation is performed using the ellipse-ellipsoid model. In the bounding box noise experiment, DEllipse-Net demonstrates higher robustness compared to other methods, achieving the highest prediction accuracy for 11 out of 23 objects in ellipse prediction. In the localization test with 15 pixels of noise, we achieve ATE (Absolute Translation Error) and ARE (Absolute Rotation Error) of 0.077 m and 2.70∘ in the fr2_desk sequence. Additionally, DEllipse-Net is lightweight and highly portable, with a model size of only 18.6 MB, and a single model can handle all objects. In the object-level instance topology and alignment experiment, our topology and alignment methods significantly enhance the global localization accuracy of the ellipse-ellipsoid model. In experiments involving lighting changes and occlusions, our method achieves more robust global localization compared to the classical bag-of-words based localization method and other ellipse-ellipsoid localization methods.
Read full abstract