Fast and accurate frequency estimation is essential in various engineering applications, including control systems, communications, and resonance sensing systems. This study investigates the effect of sample size on the interpolation algorithm of frequency estimation. In order to enhance the accuracy of frequency estimation and performance, we describe a novel method that provides a number of approaches for calculating and defending the sample size for of the window function designs, whereas, the correct choice of the type and the size of the window function makes it possible to reduce the error. Computer simulation using Matlab / Simulink environment is performed to investigate the proposed procedure's performance and feasibility. This study performs the comparison of the interpolation algorithm of frequency estimation strategies that can be applied to improve the accuracy of the frequency estimation. Simulation results shown that the proposed strategy with the Parzen and Flat-top gave remarkable change in the maximum error of frequency estimation. They perform better than the conventional windows at a sample size equal to 64 samples, where the maximum error of frequency estimation is 2.13e-2, and 2.15e-2 for Parzen and Flat-top windows, respectively. Moreover, the efficiency and performance of the Nuttall window also perform better than other windows, where the maximum error is 7.76×10-5 at a sample size equal to 8192. The analysis of simulation result showed that when using the proposed strategy to improve the accuracy of the frequency estimation, it is first essential to evaluate what is the maximum number of samples that can be obtained, how many spectral lines should be used in the calculations, and only after that choose a suitable window.
Read full abstract