Percutaneous vertebroplasty (PVP) is widely recognized as an efficacious intervention for alleviating low back pain resulting from osteoporotic vertebral compression fractures. The ideal bone puncture point is conventionally situated at the projection "left 10 points, right 2 points" of the pedicle in the lumbar spine. Determining the optimal bone puncture point represents a critical and complex challenge. The accuracy of percutaneous vertebroplasty (PVP) is primarily influenced by the proficiency of the operating surgeons and the utilization of multiple fluoroscopes during the conventional procedure. Incidences of puncture-related complications have been documented globally. In an effort to enhance the precision of the surgical technique and reduce the occurrence of puncture-related complications, our team applied the "Nine-grid Area Division Method" for PVP in the lumbar spine to modify the traditional procedure. There is potential to decrease the number of puncture times, the radiation exposure dosage, and the duration of surgical procedures. This protocol introduces the definition of the "Nine-grid Area Division Method" and describes the process of modeling target vertebrae DICOM imaging data within medical imaging processing software, simulating operations within a 3-D model, refining the 3-D model using reverse engineering production software, reconstructing the vertebral engineering model within 3-D modeling design software, and utilizing surgical data to determine safe entry regions for pedicle projection. By employing this methodology, surgeons can effectively identify appropriate puncture points with precision and ease, thereby reducing the intricacies associated with puncturing and enhancing the overall accuracy of surgical procedures.