Dissociation induced by the accumulation of internal energy via collisions of ions with neutral molecules is one of the most important fragmentation techniques in mass spectrometry (MS), and the identification of small singly charged molecules is based mainly on the consideration of the fragmentation spectrum. Many research studies have been dedicated to the creation of databases of experimentally measured tandem mass spectrometry (MS/MS) spectra (such as MzCloud, Metlin, etc.) and developing software for predicting MS/MS fragments in silico from the molecular structure (such as MetFrag, CFM-ID, CSI:FingerID, etc.). However, the fragmentation mechanisms and pathways are still not fully understood. One of the limiting obstacles is that protomers (positive ions protonated at different sites) produce different fragmentation spectra, and these spectra overlap in the case of the presence of different protomers. Here, we are proposing to use a combination of two powerful approaches: computing fragmentation trees that carry information of all consecutive fragmentations and consideration of the MS/MS data of isotopically labeled compounds. We have created PyFragMS—a web tool consisting of a database of annotated MS/MS spectra of isotopically labeled molecules (after H/D and/or 16O/18O exchange) and a collection of instruments for computing fragmentation trees for an arbitrary molecule. Using PyFragMS, we investigated how the site of protonation influences the fragmentation pathway for small molecules. Also, PyFragMS offers capabilities for performing database search when MS/MS data of the isotopically labeled compounds are taken into account.
Read full abstract