Environmentally friendly natural polymer-based room temperature phosphorescence (RTP) materials exhibit promising applications in anti-counterfeiting and information encryption. However, the construction of natural polymer-based RTP materials with multicolor long afterglow and even persistent near-infrared (NIR) luminescence remains a tough challenge. Here, starch (S)-based ultralong RTP materials with wide color-tunability, persistent NIR luminescence are conveniently prepared through Förster resonance energy transfer (FRET) strategies. The binary doping system S-4-carboxyphenylboric acid with an ultralong phosphorescence lifetime of up to 449 ms is used as energy donor, and commercial dyes fluorescein, rhodamine 6G and lissamine rhodamine B (LRB) are selected as energy acceptors. By adjusting the weight ratio of energy donor and acceptor, tunable multicolor long afterglow from blue to yellow-green, purple, red and even nearly white (0.32, 0.33) can be successfully achieved through the triplet-to-singlet FRET process. The quaternary doping system displays persistent NIR luminescence band from 650 to 800 nm along with the longest phosphorescence lifetime of up to 131 ms via the stepwise FRET process using LRB as the intermediate energy acceptor and NIR dye Nile blue A as the energy acceptor. Satisfactorily, the prepared S-based RTP materials with wide-range color-tunable long afterglow demonstrate potential applications in multimode information encryption and anti-counterfeiting.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access