Abstract
Upconversion nanoparticles (UCNPs) are characterized by high photostability, narrow spectral bands, excellent tuneability, and low biotoxicity, facilitating a broad range of biomedical applications. However, the small size required in many biological applications implies a lower luminescent brightness, as large surface-to-volume ratio is always accompanied with severe surface quenching. Herein, we introduce a strategy to overcome the surface quenching by incorporating an acceptor dye, sulforhodamine B (SRB) to surpass energy relaxation on long-lived lanthanide excited states. The surface modification of SRB led to up to 98.8% energy transfer efficiency, accompanied with the emergence of an intense SRB emission, with four orders of magnitude of change in the SRB/UCNPs emission ratio. The further structural optimisation led to an 8-fold upconversion emission enhancement. Moreover, the system exhibits excellent photostability, with only a 25% reduction over two hours under intense irradiation. By incorporating a pH responsive 5-carboxytetramethylrhodamine (5-TAMRA) to the UCNPs, we achieved a self-referencing protochromic sensor that are specific to protons and resistant to interference from various metal ions. This work provides a facile method for enhancing small-sized nanocrystals for biomedical sensing and imaging applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.