The ABALONE is a new type of photosensor produced by PhotonLab, Inc. with cost effective mass production, robustness and high performance. This modern technology provides sensitivity to visible and UV light, exceptional radio-purity and excellent detection performance in terms of intrinsic gain, afterpulsing rate, timing resolution and single-photon sensitivity. For these reasons, the ABALONE can have many fields of application, including particle physics experiments, such as DARWIN, and medical imaging. This new hybrid photosensor, that works as light intensifier, is based on the acceleration in vacuum of photoelectrons generated in a traditional photosensor cathode and guided towards a window of scintillating material that can be read from the outside through a silicon photomultiplier. In this work we present the simulation of the ABALONE and the results from operation at room temperature. The goal of the characterization is the evaluation of the gain, the response in time and the single photoelectron spectrum as a function of the electric field and the photoelectron emission angle. Details of future tests will be also discussed.
Read full abstract