In recent years, there has been increasing interest in integrating the smart grid concept into railway networks, which has been driven by the need to enhance energy efficiency and reduce air pollution in such energy-intensive systems. Consequently, experts have actively sought innovative solutions with which to tackle these challenges. One promising strategy involves integrating renewable energy sources (RESs), energy storage systems (ESSs), and electric vehicle charging stations (EVCSs) into current electric railway systems (ERSs). This study begins by examining the concept of implementing smart grids in railway systems through bibliometric analysis. It then delves into the realization of a hybrid railway microgrid (H-RMG) designed to enhance power flow capacities, improve energy efficiency, and address power quality issues in traditional AC railway networks. This paper introduces various future AC–DC-coupled hybrid railway microgrid (ADH-RMG) architectures centered around a shared DC bus acting as a DC hub for upgrading conventional AC railway systems utilizing interfacing static converters. Through an exploration of different possible ADH-RMG configurations, this research aims to offer valuable insights and a roadmap for the modernization and reconstruction of existing railway networks using smart grid technologies. The integration of RESs and EV charging infrastructures within the ADH-RMG concept presents a promising pathway toward establishing more sustainable and environmentally friendly railway systems.
Read full abstract