In our recent work, a new form of the electrostatic solvation energy for the nonequilibrium polarization has been derived by introducing the method of constrained equilibrium state in the framework of continuous medium theory. Up until now, the idea of the constrained equilibrium state method has not been introduced into the explicit solvent model by others; therefore this nonequilibrium energy form was further equivalently extended to the explicit solvent model in this work based on the discrete representation of the solvent permanent charges and induced dipoles. Making use of this expression in explicit solvent model, we modified the nonequilibrium module in the averaged solvent electrostatic potential/molecular dynamics program to implement numerical calculations. Subsequently, the new codes were applied to study the solvatochromic shifts of the n → π* absorption spectra for acetone and trans-formic acid in aqueous solution. The calculation results show a good agreement with the experimental observations. When our results of spectral shift are compared with those achieved directly from the continuum model, it can be seen that both the explicit solvent model and continuum model derived based on the constrained equilibrium approach can give reasonable predictions. The hydrogen bond effect was also discussed and deemed to be a dominant contribution to the spectral shift by calculating the n → π* absorption spectra of acetone-water complexes.
Read full abstract