Systematic and quantitative analysis of the reliability of formally exact methods that in silico calculate absolute protein-ligand binding free energies remains lacking. Here, we provide, for the first time, evidence-based information on the reliability of these methods by statistically studying 853 cases from 34 different research groups through meta-analysis. The results show that formally exact methods approach chemical accuracy (error = 1.58 kcal/mol), even if people are challenging difficult tasks such as blind drug screening in recent years. The geometrical-pathway-based methods prove to possess a better convergence ability than the alchemical ones, while the latter have a larger application range. We also reveal the importance of always using the latest force fields to guarantee reliability and discuss the pros and cons of turning to an implicit solvent model in absolute binding free-energy calculations. Moreover, based on the meta-analysis, an evidence-based guideline for in silico binding free-energy calculations is provided.
Read full abstract