Developmental dysplasia of hip (DDH) represents a spectrum from acetabular dysplasia to fixed dislocation, giving disability through premature osteoarthritis. Most DDH cases continue to present without any known risk factors such as breech presentation, female sex, and family history. Incidence and population-based outcomes of DDH are difficult to reliably establish due to many DDH definitions and classifications using different types of examinations. This review takes a historical perspective on the role of imaging in DDH. Pelvic radiographs (X-Ray) were amongst the first medical images identifying DDH, but these have a limited role in infancy due to absent ossification. In the 1980s, ultrasound led to a large expansion in infant DDH screening. Unfortunately, even for well-trained users, DDH indices on ultrasound generally lack reproducibility, and have led to overdiagnosis of mild DDH. CT and MRI more thoroughly evaluate the 3D hip deformity in DDH, but are costly, less available and involve radiation dose and/or anaesthesia. Recently 3D ultrasound has been used to characterize the 3D deformity of DDH more fully, with improved inter-observer reliability, particularly amongst novice users. 3D ultrasound is also well suited to automated image analysis, but high-resolution 3D probes are costly and not widely available. Combining the latest handheld portable ultrasound probes and artificial intelligence analysis could lead to an inexpensive tool permitting practical mass population screening for DDH. Overall, our understanding of DDH is heavily influenced by the imaging tools used to visualize it and changing quickly with modern technology.