This study explores the electrical and piezoresistive properties of ultra-high toughness cementitious composites (UHTCC) enhanced with multi-walled carbon nanotubes (MWCNTs) ranging from 0 to 1 wt% of cementitious binders. The observed polarization behavior is found to be analogous to the charging process of a capacitor. The polarization process and resistivity drift over time in the piezoresistive response are explained using an existing equivalent electrical circuit model incorporating a capacitor. The average results of electrical conductivity initially decrease and subsequently increase with higher MWCNTs concentrations, a phenomenon attributed to increased porosity and reduced matrix conductivity. The percolation threshold is identified at a volume fraction of 0.00387. Notably, even in the absence of MWCNTs, UHTCC materials exhibit piezoresistive properties due to the presence of metal impurities and ionic compounds. The insufficient polarization process results in an increasing trend in fractional change in resistance (FCR). The highest FCR sensitivity to external load occurs within the percolation threshold. Additionally, three equations are proposed to calculate electrical conductivity, incorporating the effects of interfaces, porosity, and matrix conductivity reduction, which align well with the experimental findings. These insights contribute to a deeper understanding of the electrical properties of UHTCC-MWCNTs composites, enabling more precise conductivity measurements and improved sensor sensitivity.
Read full abstract