Oncidium hybridum Lodd. is an important ornamental flower that is used as both a cut flower and a potted plant around the world; additionally, its pseudobulbs serve as essential carriers for floral organs and flower development. The NAM gene family is crucial for managing responses to various stresses as well as regulating growth in plants. However, the mechanisms by which NAM genes regulate the development of pseudobulbs remain unclear. In this study, a total of 144 NAM genes harboring complete structural domains were identified in O. hybridum. The 144 NAM genes were systematically classified into 14 distinct subfamilies via phylogenetic analysis. Delving deeper into the conserved motifs revealed that motifs 1-6 exhibited remarkable conservation, while motifs 7-10 presented in a few NAM genes only. Notably, NAM genes sharing identical specific motifs were classified into the same subfamily, indicating functional relatedness. Furthermore, the examination of occurrences of gene duplication indicated that the NAM genes display 16 pairs of tandem duplications along with five pairs of segmental duplications, suggesting their role in genetic diversity and potential adaptive evolution. By conducting a correlation analysis integrating transcriptomics and metabolomics at four stages of pseudobulb development, we found that OhNAM023, OhNAM030, OhNAM007, OhNAM019, OhNAM083, OhNAM047, OhNAM089, and OhNAM025 exhibited significant relationships with the endogenous plant hormones jasmonates (JAs), hinting at their potential involvement in hormonal signaling. Additionally, OhNAM089, OhNAM025, OhNAM119, OhNAM055, and OhNAM136 showed strong links with abscisic acid (ABA) and abscisic acid glucose ester (ABA-GE), suggesting the possible regulatory function of these NAM genes in plant growth and stress responses. The 144 NAM genes identified in this study provide a basis for subsequent research and contribute to elucidating the intricate molecular mechanisms of NAM genes in Oncidium and potentially in other species.
Read full abstract