Due to the increasing prosperity of human life science and technology, many huge research results have been obtained, and the scientific research of molecular biology is developing rapidly. Therefore, the output of biological genome data has increased exponentially, which constitutes a huge amount of data analysis. The seemingly chaotic and massive amount of data information actually contains a large amount of data and information of great key scientific significance and value. Therefore, this kind of genomic data information not only contains the information content that describes the characteristics of human life but also contains the information content that can express the essence of the biological organism. It includes macroeconomic information that can reflect the basic structure and capabilities of living organisms and microinformation in related fields of molecular biology. This massive amount of genetic data is usually closely related to each other, can influence each other, and does not exist alone. In the article, the causes of uncertain data and the classification of uncertain data are introduced, and the basic concepts and related algorithms of data mining are explained. Focusing on the research and analysis of abnormal point detection and clustering algorithms in uncertain data mining technology, this paper solves the problem of how to obtain more diverse and accurate outlier detection and cluster analysis results in uncertain data. The results showed that whether it was related to obesity or not, the Lp(a) level of the sarcopenia group was significantly higher than that of the nonsarcopenia group. At the same time, the correlation analysis showed that ASM/height was negatively correlated with Lp(a). ASM/height is one of the criteria for diagnosing sarcoidosis, and it is also the core of the analysis. Among the 1956 tumor patients collected in this study, 432 had sarcopenia, accounting for 22.08%, and the incidence of sarcopenia in patients with gastrointestinal tumors increased.
Read full abstract