The Douglas-fir twig weevil (Cylindrocopturus furnissi Buchanan) (Coleoptera: Curculionidae) has recently emerged as a significant pest of Christmas trees grown in the Pacific Northwest United States. The larvae girdle and disfigure twigs, which adversely affects tree marketability. Trees produced for export are also routinely destroyed for phytosanitary reasons when C. furnissi is discovered at border crossings. Due to historically being a sporadic and benign pest on planted and natural Douglas-fir (Psuedotsuga menziesii), there is a lack of chemical management options. In laboratory experiments, we assessed the knockdown effects (ability to kill or incapacitate) of 4 insecticides commonly used on Christmas trees: one assay tested knockdown after direct contact for 24 h, and the other assay tested knockdown after being allowed to feed on treated twigs with 2 days, 7 days, and 14 days residuals. Concurrently, we monitored temperature and adult C. furnissi emergence at a noble fir bough farm for 2 years to estimate the ideal degree-day window for applying insecticides. Bifenthrin and esfenvalerate knocked down all weevils on contact within just 4 h, whereas chlorpyrifos and acephate failed to achieve 100% knockdown within 24 h. Only acephate failed to knock down more weevils than the control (water) after feeding on treated twigs, regardless of the insecticide residue age. Degree-day modeling revealed a variable emergence window between the 2 years but 50% of adult emergence occurred between approximately 1,000-1,100 degree days (1st January, 50 °F (10 °C), single sine). Future work should assess the resulting management recommendation: apply bifenthrin or esfenvalerate once annually just after 1,000 growing degree days for 2 or more years prior to harvest.
Read full abstract