Vascular endothelial cells (ECs) sense and respond to both trauma factors (histone proteins) and sepsis signals (bacterial lipopolysaccharide, LPS) with elevations in calcium (Ca2+), but it is not clear if the patterns of activation are similar or different. We hypothesized that within seconds of exposure, histones but not LPS would produce a large EC Ca2+ response. We also hypothesized that histones would produce different spatio-temporal patterns of Ca2+ events in veins than in arteries. We studied cultured ECs (Ea.Hy926) and native endothelial cells from surgically-opened murine blood vessels. High-speed live cell imaging of Ca2+ events were acquired for 5 minutes before and after stimulation of cultured ECs with histones or LPS alone or in combination. Histone-induced EC Ca2+ events were also compared in native endothelial cells from resistance-sized arteries and veins. Ca2+ activity was quantified as "Ca2+ prevalence" using custom spatiotemporal analysis. Additionally, cultured ECs were collected after 6 hours of exposure to histones or LPS for RNA sequencing. ECs - both in culture and in blood vessels - rapidly increased Ca2+ activity within seconds of histone exposure. In contrast, LPS exposure produced only a slight increase in Ca2+ activity in cultured ECs and no effect on blood vessels over 5-minute recording periods. Histones evoked large aberrant Ca2+ events (>30 seconds in duration) in both veins and arteries, but with different spatio-temporal patterns. Ca2+ activity in arterial ECs appeared as "rosettes", with Ca2+ events that propagated from one cell to all adjacent surrounding cells. In veins, ECs responsed individually without spreading. Suprisingly, exposure of cultured ECs to LPS for 5-minutes before histones potentiated EC Ca2+ activity by an order of magnitude. Exposure of ECs to histones or LPS both increased gene expression, but different mRNAs were induced. LPS and histones activate ECs through mechanisms that are distinct and additive; only histones produce large aberrant Ca2+ events. ECs in arteries and veins display different patterns of Ca2+ responses to histones.