Cancer is a prevalent and potentially fatal disease worldwide. The proliferation of abnormal cells and uncontrolled cellular growth characterizes cancer. Cancerous tumors exhibit distinct microenvironments characterized by a deficient lymphatic drainage system and aberrant blood supply. Various medications and diagnostic systems exist for cancer treatment, but they all have inherent limitations and undesirable consequences. Consequently, the achievement of effective cancer detection and treatment remains challenging. Theranostics nanoparticles are becoming increasingly popular in nano drug delivery systems. These nanoparticles can diagnose and treat tumors, making them a promising approach in the field. They are designed to be small in size, allowing them to be effective in delivering drugs to targeted areas. Furthermore, these nanoparticles can fundamentally transform the identification and management of several ailments, including cardiovascular disorders and infectious diseases. Such nanoparticles possess dual capabilities, functioning as therapeutic agents and diagnostic tools. They can transport medicinal substances, such as medications, nucleic acids, or therapeutic proteins, and include substances that can be used for imaging, such as contrast agents or fluorescent dyes, to enable non-invasive diagnostics and monitoring of the effectiveness of the treatment. These techniques can be employed for diagnostic purposes to identify, locate, and determine the extent of disorders using imaging modalities such as magnetic resonance imaging, computed tomography, positron emission tomography, and fluorescence imaging. These nanoparticles can deliver therapeutic compounds to specific locations accurately during therapy. This leads to improved effectiveness of the treatment, decreased adverse effects, and better patient outcomes. They offer a potential nanomedicine approach by providing diagnostic and therapeutic capabilities for disease diagnosis and treatment. Theranostics nanoparticles have distinct characteristics and adaptability, which can transform the healthcare sector by facilitating personalized and precise medical treatments.
Read full abstract