Desmoplastic small round cell tumor (DSRCT) is a rare but highly aggressive soft tissue sarcoma that arises in the abdominopelvic cavity of young males. Since the discovery of EWSR1::WT1 fusion as the driver of DSRCT, no actionable genomic alterations have been identified, limiting disease management to a combination of surgery, chemotherapy, and radiation, with very poor outcomes. Herein, we evaluated ERBB2/HER2 expression in DSRCT as a therapeutic target. ERBB2/HER2 expression was assessed in clinical samples and patient-derived xenografts (PDX) using RNA sequencing, RT-qPCR, and a newly developed HER2 IHC assay (clone 29D8). Responses to HER2 antibody-drug conjugates (ADC)-trastuzumab deruxtecan (T-DXd) and trastuzumab emtansine-were evaluated in DSRCT PDX, cell line, and organoid models. Drug internalization was demonstrated by live microscopy. Apoptosis was evaluated by Western blotting and caspase activity assays. ERBB2/HER2 was detectable in DSRCT samples from patients and PDXs, with higher sensitivity RNA assays and improved IHC detectability using clone 29D8. Treatment of ERBB2/HER2-expressing DSRCT PDX, cell line, and organoid models with T-DXd or trastuzumab emtansine resulted in tumor regression. This therapeutic response was long-lasting in T-DXd-treated xenografts and was mediated by rapid HER2 ADC complex internalization and cytotoxicity, triggering p53-mediated apoptosis and growth arrest. Xenograft regression was associated with bystander payload effects triggering global tumor niche responses proportional to HER2 status. ERBB2/HER2 is a therapeutic target in DSRCT. HER2 ADCs may represent novel options for managing this exceptionally aggressive sarcoma, possibly fulfilling an urgent and historically unmet need for more effective clinical therapy.