Although dysregulated sphingolipid metabolism was observed in many malignant tumors, bladder cancer has not yet been examined in this regard. This study aims to investigate the metabolism of bioactive sphingolipids across different stages of urothelial urinary bladder cancer (UBC). Forty-eight patients with UBC were included in this study. The neoplasms were classified as either non-muscle-invasive (NMIBC, n = 24) or muscle-invasive (MIBC, n = 24). Samples of the healthy bladder tissue were taken from the patients who underwent radical cystectomy. The content of sphingolipids was measured using an HPLC method, and the mRNA expression of sphingolipid transporters and metabolizing enzymes was evaluated using RT-PCR. Compared to the healthy bladder tissue, the UBC, regardless of the stage, showed an elevated expression of SphK1, Spns2, and ABCC1. The changes in the level of bioactive sphingolipids were strongly stage-dependent. MIBC showed accumulation of sphingosine-1-phosphate (S1P) and ceramide, whereas the content of these sphingolipids in the NMIBC tumor was not different from that of healthy tissue. Moreover, MIBC, compared to NMIBC, was characterized by higher levels of sphingosine and dihydroceramide. We conclude that profound alterations in sphingolipid metabolism develop upon UBC transition from non-muscle-invasive to muscle-invasive. They include the accumulation of S1P, resulting from the increased availability of sphingosine generated from ceramide, which also builds up due to a further activation of its de novo synthesis. We hypothesize that the dysregulation of S1P metabolism leading to the accumulation of this tumor-promoting sphingolipid contributes to the progression of UBC.