Hierarchical self-assembly is efficient in transferring functionality from small to large scales. Polymer nanoparticles with regularity are highly desirable because they are ideal units of hierarchical self-assembly. Herein, we proposed a crosslinking strategy for generating nanoparticles from ABC linear triblock copolymers and conducted a computational study on the self-assembly of the nanoparticles. The effect of nanoparticle symmetry on aggregation behaviors was examined. We found that the symmetric patchy nanoparticles can form various low-curvature aggregates tuned by the crosslinking numbers and A/C block lengths. Increasing the asymmetry of patchy nanoparticles causes the increased curvature of assemblies, forming well-defined structures such as loops, vesicles, and wavy ribbons. Furthermore, the self-assembly kinetics reveals a step-growth nature, resembling the step polymerization for one-dimensional growth. The work demonstrates that ABC-type polymeric nanoparticles are versatile units for building hierarchical assemblies, considerably enriching the self-assembly strategies.
Read full abstract