Abscisic acid (ABA) plays primary regulatory roles in abiotic stress tolerance and seed germination. Here, we report a unique novel Arabidopsis abscisic acid-insensitive mutant, abr (abscisic acid resistance), which was able to germinate in medium containing high ABA concentrations and tolerant to abiotic stress tolerance. We observed that abr mutant accumulated more anthocyanins by ABA treatment than did the wild type (WT). Dimethylthiourea (DMTU, an H2O2 scavenger) was effective in inhibiting ABA-induced anthocyanins accumulation. RNA-seq showed that the expression of anthocyanins synthesis, antioxidant enzyme and stress-related genes were specifically increased in ABA-treated abr seedlings, suggesting that the abr mutation affects stress response as well as ABA responses. Interestingly, seedlings accumulating anthocyanins exhibited more tolerance to mannitol and NaCl compared to wild type. We propose that ABA-induced H2O2 generation triggers the foliar anthocyanins accumulation, which, in turn, enhances the abiotic stress tolerance in abr mutant.