A historical perspective on the application of conformational analysis to structure-based ligand design approach is presented. The application of isodensity molecular electrostatic potential surfaces with the conformational energy surfaces (CES) have allowed us to reach pertinent conclusions for aiding synthetic and biochemical studies. Here we illustrate such an application on the modeling of the potent analogs of an important, environmentally stringent herbicidal compound glyphosate by constructing conformational energy surfaces. The systems were modeled by substituting F, Cl, and NH— OH moiety to the position of pharmacophoric nitrogen center in glyphosate structure. All the calculations were thoroughly performed with ab initio MO theory at Hartree–Fock method using 3-21G(d) basis functions. On the basis of the results, we identified the bioactive conformations for N-fluoro-glyphosate, N-chloro-glyphosate, and N-hydroxyamino-glyphosate as (−38∘, 77∘), (−61∘, 111∘), and (−167∘, −169∘), respectively. Geometry optimization of certain selected conformations of these compounds using hybrid DFT method with 6–31+G(d) basis functions provides nearly equal values of φ and ψ. Moreover, the results indicate that the global minimum structures of N-fluoro and N-chloro analogs of glyphosate show cyclic conformation whereas the N-hydroxyamino-glyphosate global minimum structure shows spyrocyclic and zig-zag conformation. Also, the predicted bioactive conformation of N-hydroxyamino analog optimally overlaps with glyphosate backbone in EPSPS complex with 0.1 A RMSD value. However, the other two compounds slightly deviate from the backbone of glyphosate with RMSD of 0.92 A for N-fluoro-glyphosate and 0.83 A for N-chloro-glyphosate. The linear N-hydroxyamino-glyphosate exhibits relatively more number of intermolecular hydrogen bond interactions as compared to the other two analogs. Further, comparison of CES of previously studied glyphosate analogs such as N-hydroxy-glyphosate (2.2 μM) and N-amino-glyphosate (0.61 μM) with the present systems reveals the order of activity as: N-hydroxyamino-glyphosate > N-fluoro-glyphosate > N-chloro-glyphosate based on CES flexibility. Also, the calculated heats of formation of N-fluoro-glyphosate, N-chloro-glyphosate, and N-hydroxyamino-glyphosate are −288, −209, and −288 kcal/mol, respectively, which clearly indicate that the N-hydroxyamino and N-fluoro analogs of glyphosate are thermodynamically more stable than N-amino-glyphosate (−278 kcal/mol).
Read full abstract