Human ESCs are produced from embryos donated at the mid-stage of pre-implantation development. This cryostorage reduced viability. However, it has been shown that this can be improved by the addition of growth factors to culture medium. The aim of the present study was to examine whether the addition of insulin to embryo culture medium from the 8-cell stage of development increases the number of ES cell progenitor cells in the epiblast in a mouse model. In vivo produced mouse zygotes (C57Bl6 strain) were cultured in G1 medium for 48h to the 8-cell stage, followed by culture in G2 supplemented with insulin (0, 0.17, 1.7 and 1700pM) for 68h, at 37 o C , in 5% O2, 6%CO2, 89% N2 . The number of cells in the inner cell mass (ICM) and epiblast was determined by immunohistochemical staining for Oct4 and Nanog. ICM cells express Oct4, epiblast cells express both Oct4 and Nanog. The addition of insulin at the concentrations examined did not increase the ICM. However, at 1.7pM insulin increased the number of epiblast cells (6.6±0.5 cells vs 4.1±0.5, P=0.001) in the ICM, which increased the proportion of the ICM that was epiblast (38.9±3.7% compared to 25.8±3.4% in the control P=0.01). This indicates that the increase in the epiblast is brought about by a shift in cell fate as opposed to an increase in cell division. The effect of insulin on the proportion of cells in the epiblast was investigated using inhibitors of phosphoinositide3-kinase (PI3K) (LY294002, 50µM); one of insulin's main second messengers, and p53 (pifithrin-α, 30µg/ml); a pro-apoptotic protein inactivated by PI3K. Inhibition of PI3K eliminated the increase caused by insulin (4.5±0.3 cells versus 2.2±0.3 cells, P<0.001), while inhibition of p53 increased the epiblast cell number compared to the control (7.1±0.8 and 4.1±0.7 respectively P=0.001). This study shows that insulin increases epiblast cell number through the activation of PI3K and the inhibition of p53, and may be a strategy for improving ESC isolation from human embryos.
Read full abstract