Vagal sensory afferents carrying information from the gastrointestinal tract (GI) terminate in the nucleus of the solitary tract (NTS). Different subpopulations of NTS neurons then relay this information throughout the brain. Cholecystokinin (CCK) is a satiety peptide that activates vagal afferents in the GI. However, CCK is also expressed by neurons in the NTS, and activation of these neurons decreases food intake. What is less clear is how these NTS CCK neurons are activated by vagal afferents and what type of information they integrate about meal size and content. To address this, we identified NTS-CCK neurons by crossing CCK-IRES-Cre mice with floxed-Rosa-tdtomato mice and made a horizontal brain slice containing vagal afferents in the solitary tract (ST). Voltage clamp recordings of NTS-CCK neurons show that activation of the ST evokes excitatory postsynaptic currents (EPSCs) mediated by both α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-d-aspartate (NMDA) receptors. Analysis of these EPSCs revealed that 80% of NTS-CCK neurons receive direct, monosynaptic inputs, with many also receiving indirect, or polysynaptic, inputs. NTS-CCK neurons are sensitive to the transient receptor potential vanilloid type 1 agonist capsaicin, suggesting that they are downstream of C-fibers. In addition, both CCK and a 5 hydroxytryptamine 3 receptor (5-HT3R) agonist increased spontaneous EPSC (sEPSC) frequency in NTS-CCK neurons, with 69% of NTS-CCK neurons sensitive to CCK and 42% to the 5-HT3 receptor agonist, as well as 45% sensitive to both and 10% to neither. Taken together with previous studies, this suggests that NTS-CCK neurons are driven primarily by vagal afferents that are sensitive to CCK and are only weakly driven by those sensitive to serotonin.NEW & NOTEWORTHY Nucleus of the solitary tract (NTS) cholecystokinin (CCK) expressing neurons are directly activated by glutamate released from vagal afferents. They are downstream of primarily C-type CCK-sensitive afferents, with a small proportion also downstream of serotonin-sensitive afferents. These findings suggest that NTS-CCK neurons integrate signals from the gut about ingestion of fats and proteins as well as stretch of the stomach, which they then relay to other brain regions important for the control of food intake.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access