In this study, a Z-scheme heterojunction CoFe1.95Y0.05O4/Ag/g-C3N4 (CFYO/ACN) magnetic nanocomposite was prepared by hydrothermal synthesis. The composite was characterised and analyzed using different characterization tools and its photocatalytic degradation activity towards methylene blue (MB) was investigated. The results showed that the CFYO/ACN photocatalyst compared to CoFe1.95Y0.05O4 (CFYO) and Ag/g-C3N4 (ACN), the composite CFYO/ACN had the highest degradation efficiency of MB, which was up to 97 % within 120 min, which was 1.26 and 1.09 times higher than that of ACN and CFYO, respectively. The enhancement of the catalytic performance of CFYO/ACN was attributed to the fact that the heterogeneous junction formation effectively inhibited the complexation of photogenerated carriers. In addition, five consecutive cyclic degradation experiments showed that CFYO/ACN exhibited efficient photocatalytic degradation, stable crystal structure, and easy recycling in the photodegradation process. Finally, the capture experiments confirmed that superoxide radicals (⋅O2−) and hydroxyl radicals (·OH) play a major role in the degradation process. This study provides an effective strategy for the construction of efficient photocatalysts.
Read full abstract