ABSTRACT This paper presents a 3D tolerance analysis approach for linear dimensions applied to planar faces in an assembly. The assembly variations are generated and visualized as an explicit geometrical stack-up of the component variations using the solid modeller Solidworks®. The feature variations are obtained by adapting the geometric solid model of each component, either by offsetting the target planar face or by tilting it within the tolerance zone. A concept of Oriented Minimum Bounding Box (OMBB) is introduced to generate individual component variations with any generalized shape of the target planar face. The analysis of the OMBB extents, the tilting angles and the corresponding pivot points has revealed symmetry in these data. Rigorous mathematical formulations have been implemented in this study to handle the general case of large and small displacements. An approach is suggested to evaluate the functional dimensions, the target face’s centroid and normal for each assembly variation. Functional dimensions of the assembly variations obtained by the software ‘3DCS Variation Analyst’ are found to deviate from those obtained by the proposed approach by up to 40% of the assembly tolerance size. 3DCS tool has also failed to detect out-of-specification assembly variations, which were identified by the proposed approach.