3D-printed biomedical polylactic acid (PLA) scaffolds were developed, and their biodegradation, as well as their thermomechanical behavior, were studied in a relevant in vitro environment. The scaffold’s biodegradability profile has been monitored after immersion in a cell culture medium that contains components of blood and body fluids. Two types of biodegradation experiments were performed—a standard static one and an adapted stirring one, mimicking the body fluids’ flow, respectively—to achieve a comparative investigation. The biodegradation experiment’s duration was one month. The measurements were performed between days 1 and 28. The scaffold microstructure was analyzed with scanning electron microscopy (SEM). The weight loss of the scaffolds has been monitored. Differential scanning calorimetry (DSC) has been used to evaluate the glass transition temperature (Tg) of the scaffolds and to draw useful conclusions about their thermal behavior. Finally, dynamic mechanical analysis (DMA) was applied to investigate the viscoelastic behavior of the samples. The SEM analysis demonstrated that the samples in a static experiment are more damaged, while those in the stirring experiment are more brittle. The maximum Tg value of the material measured by DSC is around 65 °C. This value is reached after 5 days of immersion in static conditions and after 14 days of immersion after stirring, indicating that some processes take place faster in the static experiment. The variation of the Tg vs. immersion time, as derived from DSC vs. DMA measurements, gives similar results for both static and fluid absorption conditions, demonstrating the reproducibility of the results.
Read full abstract