Construction and functionalization of a 3D graphene architecture are crucial to harness and extend the unique features of graphene and thus essential for its numerous conventional and novel applications. Herein, a 3D honeycomb-patterned porous graphene architecture is constructed through a facile and low-cost self-assembly process and then integrated with Cu2O nanoparticles via a simple electrodeposition procedure. The 3D porous graphene structure is prepared by the breath figure method using a graphene oxide (GO)-based complex in which GO is modified by a surfactant as the casting material. Benefiting from the intercalation of the surfactant between the GO nanosheets and the fabrication of a 3D porous structure, the aggregation inhibition of GO nanosheets and increases in accessible surface area are realized at both nano- and microscales, resulting in good electrochemical performance. Moreover, the deposition of Cu2O nanoparticles can further improve the electrochemical sensing performance of the porous reduced graphene oxide (rGO) structure. Extremely low detection limit (30.72 nM) with a linear range of 0 μM to 30 μM, excellent anti-interference, repeatability, reproducibility, stability, and high accuracy for actual sample testing are shown when the 3D porous Cu2O/rGO film is applied as an electrochemical sensor for DA detection. This work provides not only a superior electrochemical biosensor but also a simple, yet effective and general strategy for the construction and functionalization of a 3D graphene structure.
Read full abstract