Spinal dural arteriovenous fistulas (SDAVFs) often go undiagnosed, leading to irreversible spinal cord dysfunction. Although digital subtraction angiography (DSA) is the gold standard for diagnosing SDAVF, DSA is invasive and operator dependent, with associated risks. MR angiography (MRA) is a promising alternative. This study aimed to evaluate the performance of MRA as an equal alternative to DSA in investigating, diagnosing, and localizing SDAVF. Prospectively collected data from a single neurosurgeon at a large tertiary academic center were searched for SDAVFs. Eligibility criteria included any patient with a surgically proven SDAVF in whom preoperative DSA, MRA, or both had been obtained. The eligible patients formed a consecutive series, in which they were divided into DSA and MRA groups. DSA and MRA were the index tests that were compared to the surgical SDAVF outcome, which was the reference standard. Accurate diagnosis was considered to have occurred when the imaging report matched the operative diagnosis to the correct spinal level. Comparisons used a two-sample t-test for continuous variables and Fisher-Freeman-Halton's exact test for categorical variables, with p < 0.05 specifying significance. Univariate, bivariate, and multivariate analyses were conducted to investigate group associations with DSA and MRA accuracy. Positive predictive value, sensitivity, and accuracy were calculated. A total of 27 patients with a mean age of 63 years underwent surgery for SDAVF. There were 19 male (70.4%) and 8 female (29.6%) patients, and the mean duration of symptoms at the time of surgery was 14 months (range 2-48 months). Seventeen patients (63%) presented with bowel or bladder incontinence. Bivariate analysis of the DSA and MRA groups further revealed no significant relationships between the characteristics and accuracy of SDAVF diagnosis. MRA was found to be more sensitive and accurate (100% and 73.3%) than DSA (85.7% and 69.2%), with a subanalysis of the patients with both preoperative MRA and DSA showing that MRA had a greater positive predictive value (78.6 vs 72.7), sensitivity (100 vs 72.7), and accuracy (78.6 vs 57.1) than DSA. In surgically proven cases of SDAVFs, the authors determined that MRA was more accurate than DSA for SDAVF diagnosis and localization to the corresponding vertebral level. Incomplete catheterization at each vertebral level may result in the failure of DSA to detect SDAVF.