Ritonavir is a protease inhibitor initially developed for HIV treatment that is now used as a pharmacokinetic booster for other antiretrovirals due to it being a cytochrome P450 3A4 enzyme and P-glycoprotein inhibitor. Consequently, ritonavir is of special interest for repurposing in other diseases. It had an important role in battling the COVID-19 pandemic as a part of the developed drug Paxlovid® in association with nirmatrelvir and has shown effects in hepatitis and other pathogenic diseases. Ritonavir has also shown promising results in overcoming drug resistance and enhancing the efficacy of existing chemotherapeutic agents in oncology. Evidence of cancer repurposing potential was demonstrated in cancers such as ovarian, prostate, lung, myeloma, breast, and bladder cancer, with several mechanisms of action presented. In vitro studies indicate that ritonavir alone can inhibit key pathways involved in cancer cell survival and proliferation, causing apoptosis, cell cycle arrest, endoplasmic reticulum stress, and metabolic stress due to the inhibition of molecules like heat shock protein 90 and cyclin-dependent kinases. Ritonavir also causes resistant cells to become sensitized to anticancer drugs like gemcitabine or docetaxel. These findings indicate that repurposing ritonavir, either on its own or in combination with other medications, could be a promising approach for treating various diseases. This is particularly relevant in cancer therapy, where ritonavir repurposing is the central focus of this review.
Read full abstract