Intercropping cadmium (Cd) hyperaccumulators with crops have been widely applied in the remediation of contaminated farmland soils. However, most studies were done on drylands since the majority of the hyperaccumulators are susceptible to the aquatic environment, making the remediation of Cd-contaminated paddy fields particularly difficult. Our study attempts to address the issue by intercropping the high-Cd-accumulating (henceforth, “high-Cd”) rice cultivars with the low-Cd-accumulating (henceforth, “low-Cd”) ones, and to study the Cd removal, uptake and translocation during the remediation process. The results indicated that intercropping mode with 20-cm row spacing (intercropping-20 treatment) performed better than the that with 30-cm row spacing (intercropping-30 treatment), while intercropping had stronger impact on late rice compared to early rice. In general, the physiological condition of rice was stable under the intercropping-20 treatment, suggesting the growth of rice was not impeded. For late rice, as the intercropping-20 treatment can significantly reduce soil pH and increase the diethylenetriaminepentaacetic acid extracted Cd (DTPA-extracted Cd) from the rhizosphere soil, Cd accumulated more in the tissues of the high-Cd rice cultivars (H2), and its dry biomass increased. As a result, a drastic improvement in the total Cd removal rate by 38.55 % was noticed. Therefore, the reduction of total Cd concentration in 0–20 cm profile caused by removal, thus it could provide safer soil environment for the growth of low Cd-rice cultivars (L2), leading to a significant drop in the root Cd concentration and safer production of L2. Interestingly, intercropping had no effect on the yield per plant of low-Cd rice cultivars. For early rice, intercropping-20 treatment exerted trivial effects to all aspects. The intercropping-30 treatment has poor representativeness of all indicators because of the large intercropping distance. Our results demonstrate that intercropping of the high-Cd and the low-Cd rice cultivars is a potential mode for Cd remediation in paddy fields.
Read full abstract