In this second paper we define a post-minkowskian (PM) weak field approximation leading to a linearization of the Hamilton equations of Arnowitt–Deser–Misner (ADM) tetrad gravity in the York canonical basis in a family of nonharmonic 3-orthogonal Schwinger time gauges. The York time 3K (the relativistic inertial gauge variable, not existing in newtonian gravity, parametrizing the family, and connected to the freedom in clock synchronization, i.e., to the definition of the the shape of the instantaneous 3-spaces) is set equal to an arbitrary numerical function. The matter are considered point particles, with a Grassmann regularization of self-energies, and the electromagnetic field in the radiation gauge: an ultraviolet cutoff allows a consistent linearization, which is shown to be the lowest order of a hamiltonian PM expansion. We solve the constraints and the Hamilton equations for the tidal variables and we find PM gravitational waves with asymptotic background (and the correct quadrupole emission formula) propagating on dynamically determined non-euclidean 3-spaces. The conserved ADM energy and the Grassmann regularization of self-energies imply the correct energy balance. A generalized transverse–traceless gauge can be identified and the main tools for the detection of gravitational waves are reproduced in these nonharmonic gauges. In conclusion, we get a PM solution for the gravitational field and we identify a class of PM Einstein space–times, which will be studied in more detail in a third paper together with the PM equations of motion for the particles and their post-newtonian expansion (but in the absence of the electromagnetic field). Finally we make a discussion on the gauge problem in general relativity to understand which type of experimental observations may lead to a preferred choice for the inertial gauge variable 3K in PM space–times. In the third paper we will show that this choice is connected with the problem of dark matter.
Read full abstract