Three-dimensional treatment planning can allow the clinician to create plans that are highly individualized for each patient. However, in lifting the constraints traditionally imposed by 2-dimensional planning, the clinician is faced with the need to compare a much larger number of plans. Although methods to automate that process are being developed, it is not yet clear how well they will perform. VISTAnet is a 3 year collaborative effort between the Departments of Radiation Oncology and Computer Science at the University of North Carolina, the North Carolina Supercomputing Center, BellSouth, and GTE with the medical goal of providing real-time 3-dimensional radiation dose calculation and display. With VISTAnet technology and resources, the user can inspect 3-dimensional treatment plans in real-time along with the associated dose volume histograms and can fine tune these plans in real-time with regard to beam position, weighting, wedging, and shape. Thus VISTAnet provides an alternate and, possibly, complementary approach to computerized searches for optimal radiation treatment plans. Building this system has required the development of very fast radiation dose code, methods for simultaneously manipulating and modifying multiple radiation beams, and new visualizations of 3-dimensional dose distributions.
Read full abstract