Due to the severe recombination of charge carriers, the photocatalytic activity of covalent organic frameworks (COFs) materials is limited. Herein, through simple ultrasound and stirring processes, the Pd metallene (Pde) is successfully combined with 2D COFs to form Pde/TpPa-1-COF (Pde/TPC) composites. Obviously, a strong internal electric field (IEF) is successfully formed in Pde/TPC hybrid materials, which significantly boosts the separation of photogenerated charges. In addition, the matched 2D structure of the two materials can also lead to electronic coupling effects, plentiful active sites, and shortened carrier migration paths. Thus, the Pde/TPC hybrid materials own extraordinary carrier separation ability with a longer carriers lifetime (3.3 ns for Pde/TPC and 2.7 ns for TPC), which can be proved series of photoelectrochemical and spectroscopic tests. Benefiting from the formation of IEF and the matched 2D structure, the 8% Pde/TPC demonstrates the highest photocatalytic H2 evolution efficiency, with H2 production rate reaching up to 5.85 mmolg-1h-1, which is over 25 times greater than that of pristine COFs, also exceeding that of many reported COFs-based photocatalysts. This research provides new perspectives and innovative approaches to further research on enhancing the internal electric field of COFs to promote their photocatalytic performance.
Read full abstract