A new total synthesis of the natural δ-lactone cleistenolide (1) and its (6S)-stereoisomer 2 was achieved starting from d-glucose. Key steps in the synthesis of 1 involved: oxidative cleavage of the C1–C2 bond in partially protected d-glucose derivative (20), and chain extension of resulting aldehyde 20a with a single C2 fragment using (Z)-selective Wittig olefination. Synthesis of 2 involves the following key steps: periodate cleavage of the C5–C6 bond in the commercially available monoacetone d-glucose (24), followed by C2 chain elongation by using the (Z)-selective Wittig olefination. This new approach is also applied to prepare a few new 4-substituted cleistenolide analogues (3 – 18). Compounds 3 – 7 were designed using molecular hybridization, while the remaining eleven analogues were designed using the bioisosterism method. MTT assay showed that most analogues were more active than lead 1 against several malignant cells, but were completely inactive in the culture of normal foetal lung fibroblasts (MRC-5). The K562 cells appeared to be the most sensitive to the synthesized analogues. The strongest antiproliferative activity against this cell line was shown by 4-O-cinnamoyl derivative 3 and 4,6-di-O-benzyl derivative 17, with submicromolar IC50 values (0.76 and 0.67 μM, respectively). Structural features important for the activity of this class of compounds were identified by SAR analysis.
Read full abstract