Targeted radiotherapy (TRT) is an increasingly prominent area of research in nuclear medicine, particularly in the context of treating cancerous tumors. One radionuclide of considerable interest for TRT is terbium-161 (t1/2 = 6.95 days), which undergoes beta emission and shares similar decay properties as 177Lu (FDA-approved as LUTATHERA® and PLUVICTO®). Besides beta emission, 161Tb also emits a significant number of conversion and Auger electrons further enhancing its therapeutic potential. Terbium-161 can be produced using nuclear reactors through an indirect neutron capture reaction, G64160dn,γG64161d→3.66min,β−T65161b, from 160Gd targets. However, a key challenge in utilizing 161Tb for TRT lies in effectively separating target and product materials to attain high specific activity for radiolabeling. Here, we detail the production of no-carrier added 161Tb using low flux research reactors (mean thermal (<0.625 eV) neutron flux: 1.356×1012n∙cm−2∙s−1) like the University of Utah TRIGA Reactor, using enriched 160Gd2O3 targets (1.5 ± 0.3 μCi of 161Tb per mg of 160Gd target per hour of irradiation). We also developed a separation technique based on cation exchange and extraction chromatography, suitable for mCi level irradiations with targets exceeding 200 mg. In a simulated full-scale irradiation, 161Tb was successfully isolated from large mass targets using cation exchange (AG 50W-X8, with 2-hydroxyisobutyric acid at 70 mM, pH 4.75) and extraction chromatography (LN Resin, 0.5–0.75 M HNO3) methods. This resulted in high apparent molar activities of [161Tb]Tb-DOTA (113 ± 3 MBq/nmol), demonstrating high purity 161Tb relevant for potential future preclinical applications.
Read full abstract