BackgroundThere is an urgent need to replace fossil-based fuels and chemicals with bio-based, renewable alternatives. Water content is a critical parameter in these liquid products since water affects their quality and properties. However, currently existing methods for bio-oil water content determination have limitations and thus, there is a need to find methods that are versatile, work for a wide water content and sample consistency range repeatably and reliably and are safe for the user and the environment. ResultsIn this research, a17O NMR spectroscopy protocol for water content determination of pyrolysis and hydrothermal liquefaction (HTL) liquids was developed and compared with the standard method Karl Fischer (KF) titration. The approach showed linearity over a wide concentration range, and the changes to the measurement parameters caused only minor effects to the results (≤0.8 percentage points) indicating robustness. The method is also accurate since the absolute differences between experimental and theoretical water contents varied from 0.08 % to 2.09 %. Additionally, the precision of the method, based on the relative standard deviations (RSD) of the three replicate measurements of pyrolysis and HTL samples, was good (RSD <1.82 %). The method was applied to samples containing 1–98 wt% water. Overall, the 17O NMR spectroscopy and KF titration results were well aligned with each other suggesting that the 17O NMR spectroscopy is a potential alternative for the conventional KF titration. SignificanceThis is the first study on the use of 17O NMR spectroscopy protocol for water content quantification. The results indicate that the protocol is an accurate, linear, and precise technique for water content determination of a wide range of samples. Furthermore, the method does not require hazardous chemicals or calibration standards, and the sample preparation is straightforward. The non-destructiveness of the method also enables further studies on the sample, e.g. by 1H NMR spectroscopy.
Read full abstract