Roux-en-Y Gastric Bypass may be associated with an alteration of protein bioavailability in relation to intestinal remodeling. Our study aimed to test this hypothesis by Roux-en-Y Gastric Bypass. Diet-induced obese rats underwent Roux-en-Y Gastric Bypass surgery (RYGB rats) while a Sham-operated control group was used. All rats received a 15N-labeled protein meal 1 or 3 months after surgery and were euthanized 6h later. Protein digestibility, 15N recovered in organs and urea pool, fractional protein synthesis rate, and intestinal morphometry were assessed. Protein digestibility was similar in all groups (94.2±0.3%). The small intestine was hypertrophied in RYGB rats 1 month after surgery, weighing 9.1±0.2g vs. 7.0±0.3g in Sham rats (P = 0.003). Villus height and crypt depth were increased in the alimentary limb and ileum of RYGB rats. However, Roux-en-Y Gastric Bypass had no impact on the fractional synthesis rate. In the gastrointestinal tract, 15N retention only differed in the ileal mucosa and was higher in RYGB rats at 1 month (0.48±0.2% vs. 0.3±0.09%, P = 0.03). 15N recovery from the liver, muscle, and skin was lower in RYGB rats at 1 month. 15N recovery from urinary and plasma urea was higher in RYGB rats at both times, resulting in increased total deamination (13.2±0.9% vs. 10.1±0.5%, P<0.01). This study showed that Roux-en-Y Gastric Bypass did not affect protein digestibility. Dietary nitrogen sequestration was transitorily and moderately diminished in several organs. This was associated with a sustained elevation of postprandial deamination after Roux-en-Y Gastric Bypass, whose mechanisms merit further studies.