• All Solutions All Solutions
    • Editage

      One platform for all researcher needs

    • Paperpal

      AI-powered academic writing assistant

    • R Discovery

      Your #1 AI companion for literature search

    • Mind the Graph

      AI tool for graphics, illustrations, and artwork

    Unlock unlimited use of all AI tools with the Editage Plus membership.

    Explore Editage Plus
  • Support All Solutions
    discovery@researcher.life
Discovery Logo
Paper
Search Paper
Cancel
Ask R Discovery
Features
  • Top Papers
  • Library
  • audio papers link Audio Papers
  • translate papers link Paper Translation
  • translate papers link Chrome Extension
Explore

Content Type

  • Preprints
  • Conference Papers
  • Journal Articles

More

  • Research Areas
  • Topics
  • Resources

135S Particles Research Articles

  • Share Topic
  • Share on Facebook
  • Share on Twitter
  • Share on Mail
  • Share on SimilarCopy to clipboard
Follow Topic R Discovery
By following a topic, you will receive articles in your feed and get email alerts on round-ups.
Overview
48 Articles

Published in last 50 years

Related Topics

  • Infectious Subviral Particles
  • Infectious Subviral Particles
  • Subviral Particles
  • Subviral Particles
  • Virus Particles
  • Virus Particles
  • Infectious Particles
  • Infectious Particles

Articles published on 135S Particles

Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
49 Search results
Sort by
Recency
Cryo-EM structures reveal two distinct conformational states in a picornavirus cell entry intermediate.

The virions of enteroviruses such as poliovirus undergo a global conformational change after binding to the cellular receptor, characterized by a 4% expansion, and by the opening of holes at the two and quasi-three-fold symmetry axes of the capsid. The resultant particle is called a 135S particle or A-particle and is thought to be on the pathway to a productive infection. Previously published studies have concluded that the membrane-interactive peptides, namely VP4 and the N-terminus of VP1, are irreversibly externalized in the 135S particle. However, using established protocols to produce the 135S particle, and single particle cryo-electron microscopy methods, we have identified at least two unique states that we call the early and late 135S particle. Surprisingly, only in the "late" 135S particles have detectable levels of the VP1 N-terminus been trapped outside the capsid. Moreover, we observe a distinct density inside the capsid that can be accounted for by VP4 that remains associated with the genome. Taken together our results conclusively demonstrate that the 135S particle is not a unique conformation, but rather a family of conformations that could exist simultaneously.

Read full abstract
  • PLOS Pathogens
  • Sep 30, 2020
  • Pranav N M Shah + 6
Open Access
Cite
Save

Structural Insight into CVB3-VLP Non-Adjuvanted Vaccine.

Coxsackievirus B (CVB) enteroviruses are common pathogens that can cause acute and chronic myocarditis, dilated cardiomyopathy, aseptic meningitis, and they are hypothesized to be a causal factor in type 1 diabetes. The licensed enterovirus vaccines and those currently in clinical development are traditional inactivated or live attenuated vaccines. Even though these vaccines work well in the prevention of enterovirus diseases, new vaccine technologies, like virus-like particles (VLPs), can offer important advantages in the manufacturing and epitope engineering. We have previously produced VLPs for CVB3 and CVB1 in insect cells. Here, we describe the production of CVB3-VLPs with enhanced production yield and purity using an improved purification method consisting of tangential flow filtration and ion exchange chromatography, which is compatible with industrial scale production. We also resolved the CVB3-VLP structure by Cryo-Electron Microscopy imaging and single particle reconstruction. The VLP diameter is 30.9 nm on average, and it is similar to Coxsackievirus A VLPs and the expanded enterovirus cell-entry intermediate (the 135s particle), which is ~2 nm larger than the mature virion. High neutralizing and total IgG antibody levels, the latter being a predominantly Th2 type (IgG1) phenotype, were detected in C57BL/6J mice immunized with non-adjuvanted CVB3-VLP vaccine. The structural and immunogenic data presented here indicate the potential of this improved methodology to produce highly immunogenic enterovirus VLP-vaccines in the future.

Read full abstract
  • Microorganisms
  • Aug 24, 2020
  • Minna M Hankaniemi + 15
Open Access
Cite
Save

A 3.0-Angstrom Resolution Cryo-Electron Microscopy Structure and Antigenic Sites of Coxsackievirus A6-Like Particles.

Coxsackievirus A6 (CVA6) has recently emerged as one of the predominant causative agents of hand, foot, and mouth disease (HFMD). The structure of the CVA6 mature viral particle has not been solved thus far. Our previous work shows that recombinant virus-like particles (VLPs) of CVA6 represent a promising CVA6 vaccine candidate. Here, we report the first cryo-electron microscopy (cryo-EM) structure of the CVA6 VLP at 3.0-Å resolution. The CVA6 VLP exhibits the characteristic features of enteroviruses but presents an open channel at the 2-fold axis and an empty, collapsed VP1 pocket, which is broadly similar to the structures of the enterovirus 71 (EV71) VLP and coxsackievirus A16 (CVA16) 135S expanded particle, indicating that the CVA6 VLP is in an expanded conformation. Structural comparisons reveal that two common salt bridges within protomers are maintained in the CVA6 VLP and other viruses of the Enterovirus genus, implying that these salt bridges may play a critical role in enteroviral protomer assembly. However, there are apparent structural differences among the CVA6 VLP, EV71 VLP, and CVA16 135S particle in the surface-exposed loops and C termini of subunit proteins, which are often antigenic sites for enteroviruses. By immunological assays, we identified two CVA6-specific linear B-cell epitopes (designated P42 and P59) located at the GH loop and the C-terminal region of VP1, respectively, in agreement with the structure-based prediction of antigenic sites. Our findings elucidate the structural basis and important antigenic sites of the CVA6 VLP as a strong vaccine candidate and also provide insight into enteroviral protomer assembly.IMPORTANCE Coxsackievirus A6 (CVA6) is becoming one of the major pathogens causing hand, foot, and mouth disease (HFMD), leading to significant morbidity and mortality in children and adults. However, no vaccine is currently available to prevent CVA6 infection. Our previous work shows that recombinant virus-like particles (VLPs) of CVA6 are a promising CVA6 vaccine candidate. Here, we present a 3.0-Å structure of the CVA6 VLP determined by cryo-electron microscopy. The overall architecture of the CVA6 VLP is similar to those of the expanded structures of enterovirus 71 (EV71) and coxsackievirus A16 (CVA16), but careful structural comparisons reveal significant differences in the surface-exposed loops and C termini of each capsid protein of these particles. In addition, we identified two CVA6-specific linear B-cell epitopes and mapped them to the GH loop and the C-terminal region of VP1, respectively. Collectively, our findings provide a structural basis and important antigenic information for CVA6 VLP vaccine development.

Read full abstract
  • Journal of Virology
  • Jan 2, 2018
  • Jinhuan Chen + 8
Open Access
Cite
Save

Nectin-Like Interactions between Poliovirus and Its Receptor Trigger Conformational Changes Associated with Cell Entry

Poliovirus infection is initiated by attachment to a receptor on the cell surface called Pvr or CD155. At physiological temperatures, the receptor catalyzes an irreversible expansion of the virus to form an expanded form of the capsid called the 135S particle. This expansion results in the externalization of the myristoylated capsid protein VP4 and the N-terminal extension of the capsid protein VP1, both of which become inserted into the cell membrane. Structures of the expanded forms of poliovirus and of several related viruses have recently been reported. However, until now, it has been unclear how receptor binding triggers viral expansion at physiological temperature. Here, we report poliovirus in complex with an enzymatically partially deglycosylated form of the 3-domain ectodomain of Pvr at a 4-Å resolution, as determined by cryo-electron microscopy. The interaction of the receptor with the virus in this structure is reminiscent of the interactions of Pvr with its natural ligands. At a low temperature, the receptor induces very few changes in the structure of the virus, with the largest changes occurring within the footprint of the receptor, and in a loop of the internal protein VP4. Changes in the vicinity of the receptor include the displacement of a natural lipid ligand (called "pocket factor"), demonstrating that the loss of this ligand, alone, is not sufficient to induce particle expansion. Finally, analogies with naturally occurring ligand binding in the nectin family suggest which specific structural rearrangements in the virus-receptor complex could help to trigger the irreversible expansion of the capsid. The cell-surface receptor (Pvr) catalyzes a large structural change in the virus that exposes membrane-binding protein chains. We fitted known atomic models of the virus and Pvr into three-dimensional experimental maps of the receptor-virus complex. The molecular interactions we see between poliovirus and its receptor are reminiscent of the nectin family, by involving the burying of otherwise-exposed hydrophobic groups. Importantly, poliovirus expansion is regulated by the binding of a lipid molecule within the viral capsid. We show that receptor binding either causes this molecule to be expelled or requires it, but that its loss is not sufficient to trigger irreversible expansion. Based on our model, we propose testable hypotheses to explain how the viral shell becomes destabilized, leading to RNA uncoating. These findings give us a better understanding of how poliovirus has evolved to exploit a natural process of its host to penetrate the membrane barrier.

Read full abstract
  • Journal of Virology
  • Jan 28, 2015
  • Mike Strauss + 5
Open Access
Cite
Save

Effect of formaldehyde inactivation on poliovirus.

Inactivated polio vaccines, which have been used in many countries for more than 50 years, are produced by treating live poliovirus (PV) with formaldehyde. However, the molecular mechanisms underlying virus inactivation are not well understood. Infection by PV is initiated by virus binding to specific cell receptors, which results in viral particles undergoing sequential conformational changes that generate altered structural forms (135S and 80S particles) and leads to virus cell entry. We have analyzed the ability of inactivated PV to bind to the human poliovirus receptor (hPVR) using various techniques such as ultracentrifugation, fluorescence-activated cell sorting flow cytometry and real-time reverse transcription-PCR (RT-PCR). The results showed that although retaining the ability to bind to hPVR, inactivated PV bound less efficiently in comparison to live PV. We also found that inactivated PV showed resistance to structural conversion in vitro, as judged by measuring changes in antigenicity, the ability to bind to hPVR, and viral RNA release at high temperature. Furthermore, viral RNA from inactivated PV was shown to be modified, since cDNA yields obtained by RT-PCR amplification were severely reduced and no infectious virus was recovered after RNA transfection into susceptible cells. Importance: This study represents a novel insight into the molecular mechanisms responsible for poliovirus inactivation. We show that inactivation with formaldehyde has an effect on early steps of viral replication as it reduces the ability of PV to bind to hPVR, decreases the sensitivity of PV to convert to 135S particles, and abolishes the infectivity of its viral RNA. These changes are likely responsible for the loss of infectivity shown by PV following inactivation. Techniques used in this study represent new approaches for the characterization of inactivated PV products and could be useful in developing improved methods for the production and quality control testing of inactivated polio vaccines. Measuring the antigenicity, capsid stability, and RNA integrity of inactivated PV samples could help establishing the optimal balance between the loss of infectivity and the preservation of virus antigenicity during inactivation.

Read full abstract
  • Journal of Virology
  • Aug 6, 2014
  • Thomas Wilton + 5
Open Access
Cite
Save

An interaction between glutathione and the capsid is required for the morphogenesis of C-cluster enteroviruses.

Glutathione (GSH) is the most abundant cellular thiol playing an essential role in preserving a reduced cellular environment. Cellular GSH levels can be efficiently reduced by the GSH biosynthesis inhibitor, L-buthionine sulfoximine (BSO). The aim of our study was to determine the role of GSH in the growth of two C-cluster enteroviruses, poliovirus type 1 (PV1) and coxsackievirus A20 (CAV20). Our results show that the growth of both PV1 and CAV20 is strongly inhibited by BSO and can be partially reversed by the addition of GSH. BSO has no effect on viral protein synthesis or RNA replication but it strikingly reduces the accumulation of 14S pentamers in infected cells. GSH-pull down assays show that GSH directly interacts with capsid precursors and mature virus made in the absence of BSO whereas capsid precursors produced under GSH-depletion do not bind to GSH. In particular, the loss of binding of GSH may debilitate the stability of 14S pentamers, resulting in their failure to assemble into mature virus. Immunofluorescence cell imaging demonstrated that GSH-depletion did not affect the localization of viral capsid proteins to the replication complex. PV1 BSO resistant (BSOr) mutants evolved readily during passaging of the virus in the presence of BSO. Structural analyses revealed that the BSOr mutations, mapping to VP1 and VP3 capsid proteins, are primarily located at protomer/protomer interfaces. BSOr mutations might, in place of GSH, aid the stability of 14S particles that is required for virion maturation. Our observation that BSOr mutants are more heat resistant and need less GSH than wt virus to be protected from heat inactivation suggests that they possess a more stable capsid. We propose that the role of GSH during enterovirus morphogenesis is to stabilize capsid structures by direct interaction with capsid proteins both during and after the formation of mature virus particles.

Read full abstract
  • PLoS Pathogens
  • Apr 10, 2014
  • Hsin-Chieh Ma + 12
Open Access
Cite
Save

Cryo-Electron Microscopy Reconstruction Shows Poliovirus 135S Particles Poised for Membrane Interaction and RNA Release

During infection, binding of mature poliovirus to cell surface receptors induces an irreversible expansion of the capsid, to form an infectious cell-entry intermediate particle that sediments at 135S. In these expanded virions, the major capsid proteins (VP1 to VP3) adopt an altered icosahedral arrangement to open holes in the capsid at 2-fold and quasi-3-fold axes, and internal polypeptides VP4 and the N terminus of VP1, which can bind membranes, become externalized. Cryo-electron microscopy images for 117,330 particles were collected using Leginon and reconstructed using FREALIGN. Improved rigid-body positioning of major capsid proteins established reliably which polypeptide segments become disordered or rearranged. The virus-to-135S transition includes expansion of 4%, rearrangements of the GH loops of VP3 and VP1, and disordering of C-terminal extensions of VP1 and VP2. The N terminus of VP1 rearranges to become externalized near its quasi-3-fold exit, binds to rearranged GH loops of VP3 and VP1, and attaches to the top surface of VP2. These details improve our understanding of subsequent stages of infection, including endocytosis and RNA transfer into the cytoplasm.

Read full abstract
  • Journal of Virology
  • Nov 20, 2013
  • Carmen Butan + 2
Open Access
Cite
Save

Conformational Shift of a Major Poliovirus Antigen Confirmed by Immuno-Cryogenic Electron Microscopy

Small, interfacial conformational changes occur in some Ag-Ab interactions. Using cryogenic electron microscopy (cryo-EM), we have demonstrated such changes in a major antigenic site of a poliovirus capsid protein. During cell entry, native human poliovirus (160S particle) converts to a cell entry intermediate (135S particle) and later to an RNA-released (80S) particle. By mixing particles with Fabs of the neutralizing C3 mAb, we labeled the external loop connecting the B and C β-strands (BC loop) of the capsid protein VP1 (residues 95-105) in the 160S and 135S states. We then determined three-dimensional structures by cryo-EM and enhanced their interpretability by fitting high-resolution coordinates of C3 Fab and the capsid proteins into the density maps. Binding of C3 to either 160S or 135S particles caused residues of the BC loop, located on the tip of a prominent peak known as the "mesa," to move by an estimated 5 Å. C3 Abs are neutralizing and can bind bivalently. The orientation of the bound Fabs in our reconstructions suggests that C3 neutralizes poliovirus by binding two adjacent BC loops on the same mesa and inhibiting conformational changes in the viral capsid.

Read full abstract
  • The Journal of Immunology
  • Jul 15, 2013
  • Jun Lin + 4
Open Access
Cite
Save

RNA Transfer from Poliovirus 135S Particles across Membranes Is Mediated by Long Umbilical Connectors

During infection, the binding of poliovirus to its cell surface receptor at 37°C triggers an expansion of the virus in which internal polypeptides that bind to membranes are externalized. Subsequently, in a poorly understood process, the viral RNA genome is transferred directly across an endosomal membrane, and into the host cell cytoplasm, to initiate infection. Here, cryoelectron tomography demonstrates the results of 37°C warming of a poliovirus-receptor-liposome model complex that was produced using Ni-nitrilotriacetic acid lipids and His-tagged receptor ectodomains. In total, 651 subtomographic volumes were aligned, classified, and averaged to obtain detailed pictures, showing both the conversion of virus into its expanded form and the passage of RNA into intact liposomes. Unexpectedly, the virus and membrane surfaces were located ∼50 Å apart, with the 5-fold axis tilted away from the perpendicular, and the solvent spaces between them were spanned by either one or two long "umbilical" density features that lie at an angle to the virus and membrane. The thinner connector, which sometimes appears alone, is 28 to 30 Å in diameter and has a footprint on the virus surface located close to either a 5-fold or a 3-fold axis. The broader connector has a footprint near the quasi-3-fold hole that opens upon virus expansion and is hypothesized to include RNA, shielded from enzymatic degradation by polypeptides that include the N-terminal extension of VP1 and capsid protein VP4. The implications of these observations for the mechanism of RNase-protected RNA transfer in picornaviruses are discussed.

Read full abstract
  • Journal of Virology
  • Jan 30, 2013
  • Mike Strauss + 4
Open Access
Cite
Save

In Vitro Assembly of an Empty Picornavirus Capsid follows a Dodecahedral Path

The Picornaviridae are a large family of small, spherical RNA viruses that includes numerous pathogens. The picornavirus structural proteins VP0, VP1, and VP3 are believed to first form protomers, which then form 14S particles and subsequently assemble to form empty and RNA-filled particles. 14S particles have long been presumed to be pentamers. However, the structure of the 14S particles, their mechanism of assembly, and the role of empty particles during infection are all unknown. We established an in vitro assembly system for bovine enterovirus (BEV) by using purified baculovirus-expressed proteins. By Rayleigh scattering, we determined that 14S particles are 488 kDa, confirming they are pentamers. Image reconstructions based on negative-stain electron microscopy showed that 14S particles have 5-fold symmetry, and their structures correlate extremely well with the corresponding pentamer from crystal structures of mature BEV. Purified 14S particles readily assemble in response to increasing ionic strength or temperature to form 5.8-MDa 12-pentamer particles, indistinguishable from native empty particles. Surprisingly, empty particles were sufficiently stable that, under physiological conditions, dissociation is unlikely to be a biologically relevant reaction. This suggests that empty particles are not a storage form of 14S particles, at least for bovine enterovirus, but are either a dead-end product or direct precursor into which viral RNA is packaged by as-yet-unidentified machinery.

Read full abstract
  • Journal of Virology
  • Sep 26, 2012
  • Chenglei Li + 3
Open Access
Cite
Save

Structure of the Fab-Labeled “Breathing” State of Native Poliovirus

At 37°C, the structure of poliovirus is dynamic, and internal polypeptides VP4 and N terminus of VP1 (residues 1 to 53) externalize reversibly. An Fab fragment of a monospecific antibody, which binds to residues 39 to 55 of VP1, was utilized to locate the N termini of VP1 in native (160S) particles in this "breathing" state. Fab and virus were mixed and imaged via cryogenic electron microscopy. The resulting reconstruction showed the capsid expands similarly to the irreversibly altered cell entry intermediate (135S) particle, but the N terminus of VP1 is located near the 2-fold axes, instead of the "propeller tip" as in 135S particles.

Read full abstract
  • Journal of Virology
  • Mar 7, 2012
  • Jun Lin + 5
Open Access
Cite
Save

Molecular Dynamics Flexible Fitting of Poliovirus Structural Transitions During Initiation of Infection at Atomic Resolution

Poliovirus attaches to the surface of a host cell by binding to the poliovirus receptor (PVR). Interaction of poliovirus with PVR triggers a conformational change that converts it from the 160S to the 135S state. The 135S poliovirus particle unbinds from PVR and directly associates with the membrane to initiate cell entry. Structures of the poliovirus-receptor complex and the 135S particle are only available as cryo-electron microscopy density maps that do not resolve atomic details. However, such maps permit atomic level structural assignment when x-ray structures are flexibly matched to them, for example through molecular dynamics simulation. The respective method is called Molecular Dynamics Flexible Fitting (MDFF). A complete atomic model of the poliovirus 160S particle bound to PVR has been determined by MDFF with explicit solvent and symmetry restraints based on a 2.2 A x-ray structure of poliovirus, 3.5 A x-ray structure of the D1-D2 domains of PVR, and an 8.0 A cryoEM structure of the 160S-PVR complex. PVR is found to form extensive interactions with the core beta strands, GH loop, and C-terminus of the VP1 capsid protein. A complete atomic structure of the poliovirus 135S cell entry intermediate was also determined by MDFF based on a 9.6 A cryo-EM density map. Flexible rearrangements of the VP1 GH and VP2 EF loops are observed. Molecular dynamics simulations based on the 160S-PVR and 135S atomic structures determined by MDFF provide an opportunity to identify the pathway of the 160S-to-135S structural transition and visualize the infection process of a non-enveloped virus in full atomic detail.

Read full abstract
  • Biophysical Journal
  • Jan 1, 2012
  • Yaroslav D Bodnar + 1
Open Access
Cite
Save

An Externalized Polypeptide Partitions between Two Distinct Sites on Genome-Released Poliovirus Particles

During cell entry, native poliovirus (160S) converts to a cell-entry intermediate (135S) particle, resulting in the externalization of capsid proteins VP4 and the amino terminus of VP1 (residues 1 to 53). Externalization of these entities is followed by release of the RNA genome (uncoating), leaving an empty (80S) particle. The antigen-binding fragment (Fab) of a monospecific peptide 1 (P1) antibody, which was raised against a peptide corresponding to amino-terminal residues 24 to 40 of VP1, was utilized to track the location of the amino terminus of VP1 in the 135S and 80S states of poliovirus particles via cryogenic electron microscopy (cryo-EM) and three-dimensional image reconstruction. On 135S, P1 Fabs bind to a prominent feature on the external surface known as the "propeller tip." In contrast, our initial 80S-P1 reconstruction showed P1 Fabs also binding to a second site, at least 50 Å distant, at the icosahedral 2-fold axes. Further analysis showed that the overall population of 80S-P1 particles consisted of three kinds of capsids: those with P1 Fabs bound only at the propeller tips, P1 Fabs bound only at the 2-fold axes, or P1 Fabs simultaneously bound at both positions. Our results indicate that, in 80S particles, a significant fraction of VP1 can deviate from icosahedral symmetry. Hence, this portion of VP1 does not change conformation synchronously when switching from the 135S state. These conclusions are compatible with previous observations of multiple conformations of the 80S state and suggest that movement of the amino terminus of VP1 has a role in uncoating. Similar deviations from icosahedral symmetry may be biologically significant during other viral transitions.

Read full abstract
  • Journal of Virology
  • Jul 20, 2011
  • Jun Lin + 6
Open Access
Cite
Save

Crystal structure of CD155 and electron microscopic studies of its complexes with polioviruses

When poliovirus (PV) recognizes its receptor, CD155, the virus changes from a 160S to a 135S particle before releasing its genome into the cytoplasm. CD155 is a transmembrane protein with 3 Ig-like extracellular domains, D1-D3, where D1 is recognized by the virus. The crystal structure of D1D2 has been determined to 3.5-A resolution and fitted into approximately 8.5-A resolution cryoelectron microscopy reconstructions of the virus-receptor complexes for the 3 PV serotypes. These structures show that, compared with human rhinoviruses, the virus-receptor interactions for PVs have a greater dependence on hydrophobic interactions, as might be required for a virus that can inhabit environments of different pH. The pocket factor was shown to remain in the virus during the first recognition stage. The present structures, when combined with earlier mutational investigations, show that in the subsequent entry stage the receptor moves further into the canyon when at a physiological temperature, thereby expelling the pocket factor and separating the viral subunits to form 135S particles. These results provide a detailed analysis of how a nonenveloped virus can enter its host cell.

Read full abstract
  • Proceedings of the National Academy of Sciences
  • Nov 25, 2008
  • Ping Zhang + 7
Open Access
Cite
Save

Characterization of Early Steps in the Poliovirus Infection Process: Receptor-Decorated Liposomes Induce Conversion of the Virus to Membrane-Anchored Entry-Intermediate Particles

The mechanism by which poliovirus infects the cell has been characterized by a combination of biochemical and structural studies, leading to a working model for cell entry. Upon receptor binding at physiological temperature, native virus (160S) undergoes a conformational change to a 135S particle from which VP4 and the N terminus of VP1 are externalized. These components interact with the membrane and are proposed to form a membrane pore. An additional conformational change in the particle is accompanied by release of the infectious viral RNA genome from the particle and its delivery, presumably through the membrane pore into the cytoplasm, leaving behind an empty 80S particle. In this report, we describe the generation of a receptor-decorated liposome system, comprising nickel-chelating nitrilotriacetic acid (NTA) liposomes and His-tagged poliovirus receptor, and its use in characterizing the early events in poliovirus infection. Receptor-decorated liposomes were able to capture virus and induce a temperature-dependent virus conversion to the 135S particle. Upon conversion, 135S particles became tethered to the liposome independently of receptor by a membrane interaction with the N terminus of VP1. Converted particles had lost VP4, which partitioned with the membrane. The development of a simple model membrane system provides a novel tool for studying poliovirus entry. The liposome system bridges the gap between previous studies using either soluble receptor or whole cells and offers a flexible template which can be extrapolated to electron microscopy experiments that analyze the structural biology of nonenveloped virus entry.

Read full abstract
  • Journal of Virology
  • Dec 12, 2005
  • Tobias J Tuthill + 3
Open Access
Cite
Save

The Structure of the Poliovirus 135S Cell Entry Intermediate at 10-Angstrom Resolution Reveals the Location of an Externalized Polypeptide That Binds to Membranes

Poliovirus provides a well-characterized system for understanding how nonenveloped viruses enter and infect cells. Upon binding its receptor, poliovirus undergoes an irreversible conformational change to the 135S cell entry intermediate. This transition involves shifts of the capsid protein beta barrels, accompanied by the externalization of VP4 and the N terminus of VP1. Both polypeptides associate with membranes and are postulated to facilitate entry by forming a translocation pore for the viral RNA. We have calculated cryo-electron microscopic reconstructions of 135S particles that permit accurate placement of the beta barrels, loops, and terminal extensions of the capsid proteins. The reconstructions and resulting models indicate that each N terminus of VP1 exits the capsid though an opening in the interface between VP1 and VP3 at the base of the canyon that surrounds the fivefold axis. Comparison with reconstructions of 135S particles in which the first 31 residues of VP1 were proteolytically removed revealed that the externalized N terminus is located near the tips of propeller-like features surrounding the threefold axes rather than at the fivefold axes, as had been proposed in previous models. These observations have forced a reexamination of current models for the role of the 135S particle in transmembrane pore formation and suggest testable alternatives.

Read full abstract
  • Journal of Virology
  • May 26, 2005
  • Doryen Bubeck + 5
Open Access
Cite
Save

Mechanism of action at the molecular level of the antiviral drug 3(2H)-isoflavene against type 2 poliovirus.

The mechanism of action of the antiviral compound 3(2H)-isoflavene against Sabin type 2 poliovirus has been studied, and interference with virus uncoating was demonstrated. Isolation and sequencing of drug-resistant variants revealed single amino acid substitutions (I194M or D131V) in the VP1 capsid protein. While M194 is located in a hydrophobic pocket and should partially fill the space occupied by the isoflavene ring, V131 is exposed on the VP1 surface, forming a contact with VP4. The D131V mutation most likely induces local conformational changes in VP1 and/or VP4 that affect viral flexibility. Two dependent variants, N53S of VP1 and K58E of VP4, both located on the inner surface of the capsid, near the threefold axis of symmetry, were also selected. Both mutations affected viral stability, allowing the transition to 135S particles in the absence of drug, without the involvement of the viral receptor.

Read full abstract
  • Antimicrobial Agents and Chemotherapy
  • May 21, 2004
  • Anna L Salvati + 5
Open Access
Cite
Save

Cholesterol removal by methyl-beta-cyclodextrin inhibits poliovirus entry.

Upon binding to the poliovirus receptor (PVR), the poliovirus 160S particles undergo a conformational transition to generate 135S particles, which are believed to be intermediates in the virus entry process. The 135S particles interact with host cell membranes through exposure of the N termini of VP1 and the myristylated VP4 protein, and successful cytoplasmic delivery of the genomic RNA requires the interaction of these domains with cellular membranes whose identity is unknown. Because detergent-insoluble microdomains (DIMs) in the plasma membrane have been shown to be important in the entry of other picornaviruses, it was of interest to determine if poliovirus similarly required DIMs during virus entry. We show here that methyl-beta-cyclodextrin (MbetaCD), which disrupts DIMs by depleting cells of cholesterol, inhibits virus infection and that this inhibition was partially reversed by partially restoring cholesterol levels in cells, suggesting that MbetaCD inhibition of virus infection was mediated by removal of cellular cholesterol. However, fractionation of cellular membranes into DIMs and detergent-soluble membrane fractions showed that both PVR and poliovirus capsid proteins localize not to DIMs but to detergent-soluble membrane fractions during entry into the cells, and their localization was unaffected by treatment with MbetaCD. We further demonstrate that treatment with MbetaCD inhibits RNA delivery after formation of the 135S particles. These data indicate that the cholesterol status of the cell is important during the process of genome delivery and that these entry pathways are distinct from those requiring DIM integrity.

Read full abstract
  • Journal of Virology
  • Dec 11, 2003
  • Pranav Danthi + 1
Open Access
Cite
Save

Genome delivery and ion channel properties are altered in VP4 mutants of poliovirus.

During entry into host cells, poliovirus undergoes a receptor-mediated conformational transition to form 135S particles with irreversible exposure of VP4 capsid sequences and VP1 N termini. To understand the role of VP4 during virus entry, the fate of VP4 during infection by site-specific mutants at threonine-28 of VP4 (4028T) was compared with that of the parental Mahoney type 1 virus. Three virus mutants were studied: the entry-defective, nonviable mutant 4028T.G and the viable mutants 4028T.S and 4028T.V, in which residue threonine-28 was changed to glycine, serine, and valine, respectively. We show that mutant and wild-type (WT) VP4 proteins are localized to cellular membranes after the 135S conformational transition. Both WT and viable 4028T mutant particles interact with lipid bilayers to form ion channels, whereas the entry-defective 4028T.G particles do not. In addition, the electrical properties of the channels induced by the mutant viruses are different from each other and from those of WT Mahoney and Sabin type 3 viruses. Finally, uncoating and/or cytoplasmic delivery of the viral genome is altered in the 4028T mutants: the 4028T.G lethal mutant does not release its genome into the cytoplasm, and genome delivery is slower during infection by mutant 4028T.V 135S particles than by mutant 4028T.S or WT 135S particles. The distinctive electrical characteristics of the different 4028T mutant channels indicate that VP4 sequences might form part of the channel structure. The different entry phenotypes of these VP4 mutants suggest that the ion channels may be related to VP4's role during genome uncoating and/or delivery.

Read full abstract
  • Journal of Virology
  • May 1, 2003
  • Pranav Danthi + 3
Open Access
Cite
Save

Variation in Liposome Binding among Enteroviruses

Liposome-binding properties of native virions and in vitro generated 135S particles of eight enteroviruses were studied. The temperature required for the structural transition from the native 160S virion to a 135S particle was virus-specific, ranging from +38°C to more than +50°C. While the 135S particles of poliovirus 1/Mahoney (PV1) and coxsackievirus A21 (CAV21) were capable of binding to liposomes, the other viruses showed minimal binding. Both of the viruses that bound to liposomes as 135S particles also bound as native virions. In addition, PV3/Sabin bound to liposomes as native virions but not as 135S particles, and the flotation patterns were different from those of PV1 and CAV21. The nonbinding viruses included coxsackieviruses A7, A9, A16, and B5, and enterovirus 68. The results follow the new classification of enteroviruses, as CAV21 is a member of the human enterovirus C species, which is genetically close to the poliovirus species.

Read full abstract
  • Virology
  • Jan 1, 2001
  • Antero Airaksinen + 2
Open Access
Cite
Save

  • 1
  • 2
  • 3
  • 1
  • 2
  • 3

Popular topics

  • Latest Artificial Intelligence papers
  • Latest Nursing papers
  • Latest Psychology Research papers
  • Latest Sociology Research papers
  • Latest Business Research papers
  • Latest Marketing Research papers
  • Latest Social Research papers
  • Latest Education Research papers
  • Latest Accounting Research papers
  • Latest Mental Health papers
  • Latest Economics papers
  • Latest Education Research papers
  • Latest Climate Change Research papers
  • Latest Mathematics Research papers

Most cited papers

  • Most cited Artificial Intelligence papers
  • Most cited Nursing papers
  • Most cited Psychology Research papers
  • Most cited Sociology Research papers
  • Most cited Business Research papers
  • Most cited Marketing Research papers
  • Most cited Social Research papers
  • Most cited Education Research papers
  • Most cited Accounting Research papers
  • Most cited Mental Health papers
  • Most cited Economics papers
  • Most cited Education Research papers
  • Most cited Climate Change Research papers
  • Most cited Mathematics Research papers

Latest papers from journals

  • Scientific Reports latest papers
  • PLOS ONE latest papers
  • Journal of Clinical Oncology latest papers
  • Nature Communications latest papers
  • BMC Geriatrics latest papers
  • Science of The Total Environment latest papers
  • Medical Physics latest papers
  • Cureus latest papers
  • Cancer Research latest papers
  • Chemosphere latest papers
  • International Journal of Advanced Research in Science latest papers
  • Communication and Technology latest papers

Latest papers from institutions

  • Latest research from French National Centre for Scientific Research
  • Latest research from Chinese Academy of Sciences
  • Latest research from Harvard University
  • Latest research from University of Toronto
  • Latest research from University of Michigan
  • Latest research from University College London
  • Latest research from Stanford University
  • Latest research from The University of Tokyo
  • Latest research from Johns Hopkins University
  • Latest research from University of Washington
  • Latest research from University of Oxford
  • Latest research from University of Cambridge

Popular Collections

  • Research on Reduced Inequalities
  • Research on No Poverty
  • Research on Gender Equality
  • Research on Peace Justice & Strong Institutions
  • Research on Affordable & Clean Energy
  • Research on Quality Education
  • Research on Clean Water & Sanitation
  • Research on COVID-19
  • Research on Monkeypox
  • Research on Medical Specialties
  • Research on Climate Justice
Discovery logo
FacebookTwitterLinkedinInstagram

Download the FREE App

  • Play store Link
  • App store Link
  • Scan QR code to download FREE App

    Scan to download FREE App

  • Google PlayApp Store
FacebookTwitterTwitterInstagram
  • Universities & Institutions
  • Publishers
  • R Discovery PrimeNew
  • Ask R Discovery
  • Blog
  • Accessibility
  • Topics
  • Journals
  • Open Access Papers
  • Year-wise Publications
  • Recently published papers
  • Pre prints
  • Questions
  • FAQs
  • Contact us
Lead the way for us

Your insights are needed to transform us into a better research content provider for researchers.

Share your feedback here.

FacebookTwitterLinkedinInstagram

Copyright 2024 Cactus Communications. All rights reserved.

Privacy PolicyCookies PolicyTerms of UseCareers