Lipoprotein (a) (Lp(a)) is known to be an independent risk factor for cardiovascular disease, but the mechanisms by which it contributes to this disease remain unclear. Current evidence indicates that the closely related plasma particle, low-density lipoprotein (LDL), may initiate atherosclerosis through deposition in the arterial wall. This study has compared the ability of both lipoproteins to enter and accumulate within the arterial wall. Experiments were conducted in vivo with animals from two strains of mice: C57BL/6 mice, which develop fatty streak lesions upon challenge by a high-fat diet, and C3H/HeJ mice, which are resistant to lesion formation. Animals from both strains were maintained up to 16 weeks either on chow or high-fat diet. The mice were intravenously injected with 125I-labeled human Lp(a) or 125I-labeled human LDL in equimolar amounts and the lipoprotein allowed to circulate in vivo for 2 or 24 h. Transverse sections of the aortic root including sites of predilection for lesion formation at the commissures of the valve were prepared and examined after autoradiography. The autoradiographic grains over lesions and histologically uninvolved areas were enumerated and compared after normalization. Both Lp(a) and LDL demonstrated nearly ten times greater accumulation in lesions compared with histologically uninvolved areas from C57BL/6 mice. Analyses of histologically uninvolved areas from both strains of mice showed a significantly higher accumulation of Lp(a) than LDL. Finally, significantly higher accumulations of both Lp(a) and LDL occurred in the histologically uninvolved intima and subintima of lesion-prone C57BL/6 mice as compared with lesion-resistant C3H/HeJ mice after 5 weeks on the diets. We propose that enhanced accumulation of Lp(a) in the arterial wall accounts, in part, for the increased risk of cardiovascular disease.
Read full abstract