Design floods are traditionally estimated based on the at-site annual maximum flood series, including historical information of hydraulic structures. Nevertheless, the construction and operation of upstream reservoirs undermine the assumption of stationarity in the downstream flood data series. This paper investigates non-stationary design flood estimation considering historical information from the Three Gorges Reservoir (TGR) in the Yangtze River. Based on the property that the distribution function of a continuous random variable increases monotonically, we proposed a novel time-varying P-III distribution coupled with the curve fitting method (referred to as the Tv-P3/CF model) to estimate design floods in the TGR operation period, and we comparatively studied the reservoir indices and parameter estimation methods. The results indicate that: (1) The modified reservoir index used as a covariate can effectively capture the non-stationary characteristics of the flood series; (2) The Tv-P3/CF model emphasizes the fitness of historical information, yielding superior results compared to time-varying P-III distribution estimated by the maximum likelihood method; (3) Compared to the original design values, the 1000-year design peak discharge Qm and 3-day and 7-day flood volumes in the TGR operation period are reduced by approximately 20%, while the 15-day and 30-day flood volumes are reduced by about 16%; (4) The flood-limited water level of the TGR can be raised from 145 m to 154 m, which can annually generate 0.32 billion kW h more hydropower (or increase by 6.8%) during flood season without increasing flood prevention risks.
Read full abstract