Sort by
Intraday residual transfer learning in minimally observed power distribution networks dynamic state estimation

Abstract Traditionally, electricity distribution networks were designed for unidirectional power flow without the need to accommodate generation installed at the point of use. However, with the increase in Distributed Energy Resources and other Low Carbon Technologies, the role of distribution networks is changing. This shift brings challenges, including the need for intensive metering and more frequent reconfiguration to identify threats from voltage and thermal violations. Mitigating action through reconfiguration is informed by State Estimation, which is especially challenging for low voltage distribution networks where the constraints of low observability, non-linear load relationships, and highly unbalanced systems all contribute to the difficulty of producing accurate state estimates. To counter low observability, this paper proposes the application of a novel transfer learning methodology, based upon the concept of conditional online Bayesian transfer, to make forward predictions of bus pseudo-measurements. Day ahead load forecasts at a fully observed point on the network are adjusted using the intraday residuals at other points in the network to provide them with load forecasts without the need for a complete set of forecast models at all substations. These form pseudo-measurements that then inform the state estimates at future time points. This methodology is demonstrated on both a representative IEEE Test network and on an actual GB 11 kV feeder network.

Open Access
Relevant
Using graph neural networks for wall modeling in compressible anisothermal flows

Abstract Compressible anisothermal flows, which are commonly found in industrial settings such as combustion chambers and heat exchangers, are characterized by significant variations in density, viscosity, and heat conductivity with temperature. These variations lead to a strong interaction between the temperature and velocity fields that impacts the near-wall profiles of both quantities. Wall-modeled large-eddy simulations (LESs) rely on a wall model to provide a boundary condition, for example, the shear stress and the heat flux that accurately represents this interaction despite the use of coarse cells near the wall, and thereby achieve a good balance between computational cost and accuracy. In this article, the use of graph neural networks for wall modeling in LES is assessed for compressible anisothermal flow. Graph neural networks are a type of machine learning model that can learn from data and operate directly on complex unstructured meshes. Previous work has shown the effectiveness of graph neural network wall modeling for isothermal incompressible flows. This article develops the graph neural network architecture and training to extend their applicability to compressible anisothermal flows. The model is trained and tested a priori using a database of both incompressible isothermal and compressible anisothermal flows. The model is finally tested a posteriori for the wall-modeled LES of a channel flow and a turbine blade, both of which were not seen during training.

Open Access
Relevant
Reliability assessment of off-policy deep reinforcement learning: A benchmark for aerodynamics

Abstract Deep reinforcement learning (DRL) is promising for solving control problems in fluid mechanics, but it is a new field with many open questions. Possibilities are numerous and guidelines are rare concerning the choice of algorithms or best formulations for a given problem. Besides, DRL algorithms learn a control policy by collecting samples from an environment, which may be very costly when used with Computational Fluid Dynamics (CFD) solvers. Algorithms must therefore minimize the number of samples required for learning (sample efficiency) and generate a usable policy from each training (reliability). This paper aims to (a) evaluate three existing algorithms (DDPG, TD3, and SAC) on a fluid mechanics problem with respect to reliability and sample efficiency across a range of training configurations, (b) establish a fluid mechanics benchmark of increasing data collection cost, and (c) provide practical guidelines and insights for the fluid dynamics practitioner. The benchmark consists in controlling an airfoil to reach a target. The problem is solved with either a low-cost low-order model or with a high-fidelity CFD approach. The study found that DDPG and TD3 have learning stability issues highly dependent on DRL hyperparameters and reward formulation, requiring therefore significant tuning. In contrast, SAC is shown to be both reliable and sample efficient across a wide range of parameter setups, making it well suited to solve fluid mechanics problems and set up new cases without tremendous effort. In particular, SAC is resistant to small replay buffers, which could be critical if full-flow fields were to be stored.

Open Access
Relevant
Physics-informed artificial intelligence models for the seismic response prediction of rocking structures

Abstract The seismic response of a wide variety of structures, from small but irreplaceable museum exhibits to large bridge systems, is characterized by rocking. In addition, rocking motion is increasingly being used as a seismic protective strategy to limit the amount of seismic actions (moments) developed at the base of structures. However, rocking is a highly nonlinear phenomenon governed by non-smooth dynamic phases that make its prediction difficult. This study presents an alternative approach to rocking estimation based on a physics-informed convolutional neural network (PICNN). By training a group of PICNNs using limited datasets obtained from numerical simulations and encoding the known physics into the PICNNs, important predictive benefits are obtained relieving difficulties associated with over-fitting and minimizing the requirement for a large training database. Two models are created depending on the validation of the deep PICNN: the first model assumes that state variables including rotations and angular velocities are available, while the second model is useful when only acceleration measurements are known. The analysis is initiated by implementing K-means clustering. This is followed by a detailed statistical assessment and a comparative analysis of the response-histories of a rocking block. It is observed that the deep PICNN is capable of effectively estimating the seismic rocking response history when the rigid block does not overturn.

Open Access
Relevant
Given-data probabilistic fatigue assessment for offshore wind turbines using Bayesian quadrature

Abstract Offshore wind turbines intend to take a rapidly growing share in the electric mix. The design, installation, and exploitation of these industrial assets are regulated by international standards, providing generic guidelines. Constantly, new projects reach unexploited wind resources, pushing back installation limits. Therefore, turbines are increasingly subject to uncertain environmental conditions, making long-term investment decisions riskier (at the design or end-of-life stage). Fortunately, numerical models of wind turbines enable to perform accurate multi-physics simulations of such systems when interacting with their environment. The challenge is then to propagate the input environmental uncertainties through these models and to analyze the distribution of output variables of interest. Since each call of such a numerical model can be costly, the estimation of statistical output quantities of interest (e.g., the mean value, the variance) has to be done with a restricted number of simulations. To do so, the present paper uses the kernel herding method as a sampling technique to perform Bayesian quadrature and estimate the fatigue damage. It is known from the literature that this method guarantees fast and accurate convergence together with providing relevant properties regarding subsampling and parallelization. Here, one numerically strengthens this fact by applying it to a real use case of an offshore wind turbine operating in Teesside, UK. Numerical comparison with crude and quasi-Monte Carlo sampling demonstrates the benefits one can expect from such a method. Finally, a new Python package has been developed and documented to provide quick open access to this uncertainty propagation method.

Open Access
Relevant
Semantic agent framework for automated flood assessment using dynamic knowledge graphs

Abstract This article proposes a framework of linked software agents that continuously interact with an underlying knowledge graph to automatically assess the impacts of potential flooding events. It builds on the idea of connected digital twins based on the World Avatar dynamic knowledge graph to create a semantically rich asset of data, knowledge, and computational capabilities accessible to humans, applications, and artificial intelligence. We develop three new ontologies to describe and link environmental measurements and their respective reporting stations, flood events, and their potential impact on population and built infrastructure as well as the built environment of a city itself. These coupled ontologies are deployed to dynamically instantiate near real-time data from multiple fragmented sources into the World Avatar. Sequences of autonomous agents connected via the derived information framework automatically assess consequences of newly instantiated data, such as newly raised flood warnings, and cascade respective updates through the graph to ensure up-to-date insights into the number of people and building stock value at risk. Although we showcase the strength of this technology in the context of flooding, our findings suggest that this system-of-systems approach is a promising solution to build holistic digital twins for various other contexts and use cases to support truly interoperable and smart cities.

Open Access
Relevant