Sort by
Enhancing Fake News Detection with Word Embedding: A Machine Learning and Deep Learning Approach

The widespread dissemination of fake news on social media has necessitated the development of more sophisticated detection methods to maintain information integrity. This research systematically investigates the effectiveness of different word embedding techniques—TF-IDF, Word2Vec, and FastText—when applied to a variety of machine learning (ML) and deep learning (DL) models for fake news detection. Leveraging the TruthSeeker dataset, which includes a diverse set of labeled news articles and social media posts spanning over a decade, we evaluated the performance of classifiers such as Support Vector Machines (SVMs), Multilayer Perceptrons (MLPs), and Convolutional Neural Networks (CNNs). Our analysis demonstrates that SVMs using TF-IDF embeddings and CNNs employing TF-IDF embeddings achieve the highest overall performance in terms of accuracy, precision, recall, and F1 score. These results suggest that TF-IDF, with its capacity to highlight discriminative features in text, enhances the performance of models like SVMs, which are adept at handling sparse data representations. Additionally, CNNs benefit from TF-IDF by effectively capturing localized features and patterns within the textual data. In contrast, while Word2Vec and FastText embeddings capture semantic and syntactic nuances, they introduce complexities that may not always benefit traditional ML models like MLPs or SVMs, which could explain their relatively lower performance in some cases. This study emphasizes the importance of selecting appropriate embedding techniques based on the model architecture to maximize fake news detection performance. Future research should consider integrating contextual embeddings and exploring hybrid model architectures to further enhance detection capabilities. These findings contribute to the ongoing development of advanced computational tools for combating misinformation.

Open Access Just Published
Relevant
Evaluating the Impact of Filtering Techniques on Deep Learning-Based Brain Tumour Segmentation

Gliomas are a common and aggressive kind of brain tumour that is difficult to diagnose due to their infiltrative development, variable clinical presentation, and complex behaviour, making them an important focus in neuro-oncology. Segmentation of brain tumour images is critical for improving diagnosis, prognosis, and treatment options. Manually segmenting brain tumours is time-consuming and challenging. Automatic segmentation algorithms can significantly improve the accuracy and efficiency of tumour identification, thus improving treatment planning and outcomes. Deep learning-based segmentation tumours have shown significant advances in the last few years. This study evaluates the impact of four denoising filters, namely median, Gaussian, anisotropic diffusion, and bilateral, on tumour detection and segmentation. The U-Net architecture is applied for the segmentation of 3064 contrast-enhanced magnetic resonance images from 233 patients diagnosed with meningiomas, gliomas, and pituitary tumours. The results of this work demonstrate that bilateral filtering yields superior outcomes, proving to be a robust and computationally efficient approach in brain tumour segmentation. This method reduces the processing time by 12 epochs, which in turn contributes to lowering greenhouse gas emissions by optimizing computational resources and minimizing energy consumption.

Open Access Just Published
Relevant
Enhancing Solar Power Efficiency: Smart Metering and ANN-Based Production Forecasting

This paper presents a comprehensive and comparative study of solar energy forecasting in Morocco, utilizing four machine learning algorithms: Extreme Gradient Boosting (XGBoost), Gradient Boosting Machine (GBM), recurrent neural networks (RNNs), and artificial neural networks (ANNs). The study is conducted using a smart metering device designed for a photovoltaic system at an industrial site in Benguerir, Morocco. The smart metering device collects energy usage data from a submeter and transmits it to the cloud via an ESP-32 card, enhancing monitoring, efficiency, and energy utilization. Our methodology includes an analysis of solar resources, considering factors such as location, temperature, and irradiance levels, with PVSYST simulation software version 7.2, employed to evaluate system performance under varying conditions. Additionally, a data logger is developed to monitor solar panel energy production, securely storing data in the cloud while accurately measuring key parameters and transmitting them using reliable communication protocols. An intuitive web interface is also created for data visualization and analysis. The research demonstrates a holistic approach to smart metering devices for photovoltaic systems, contributing to sustainable energy utilization, smart grid development, and environmental conservation in Morocco. The performance analysis indicates that ANNs are the most effective predictive model for solar energy forecasting in similar scenarios, demonstrating the lowest RMSE and MAE values, along with the highest R2 value.

Open Access Just Published
Relevant
YOLOv8-Based Drone Detection: Performance Analysis and Optimization

The extensive utilization of drones has led to numerous scenarios that encompass both advantageous and perilous outcomes. By using deep learning techniques, this study aimed to reduce the dangerous effects of drone use through early detection of drones. The purpose of this study is the evaluation of deep learning approaches such as pre-trained YOLOv8 drone detection for security issues. This study focuses on the YOLOv8 model to achieve optimal performance in object detection tasks using a publicly available dataset collected by Mehdi Özel for a UAV competition that is sourced from GitHub. These images are labeled using Roboflow, and the model is trained on Google Colab. YOLOv8, known for its advanced architecture, was selected due to its suitability for real-time detection applications and its ability to process complex visual data. Hyperparameter tuning and data augmentation techniques were applied to maximize the performance of the model. Basic hyperparameters such as learning rate, batch size, and optimization settings were optimized through iterative experiments to provide the best performance. In addition to hyperparameter tuning, various data augmentation strategies were used to increase the robustness and generalization ability of the model. Techniques such as rotation, scaling, flipping, and color adjustments were applied to the dataset to simulate different conditions and variations. Among the augmentation techniques applied to the specific dataset in this study, rotation was found to deliver the highest performance. Blurring and cropping methods were observed to follow closely behind. The combination of optimized hyperparameters and strategic data augmentation allowed YOLOv8 to achieve high detection accuracy and reliable performance on the publicly available dataset. This method demonstrates the effectiveness of YOLOv8 in real-world scenarios, while also highlighting the importance of hyperparameter tuning and data augmentation in increasing model capabilities. To enhance model performance, dataset augmentation techniques including rotation and blurring are implemented. Following these steps, a significant precision value of 0.946, a notable recall value of 0.9605, and a considerable precision–recall curve value of 0.978 are achieved, surpassing many popular models such as Mask CNN, CNN, and YOLOv5.

Open Access Just Published
Relevant
An Unsupervised Approach for Treatment Effectiveness Monitoring Using Curvature Learning

Contrast-enhanced ultrasound could assess whether cancer chemotherapeutic agents work in days, rather than waiting 2–3 months, as is typical using the Response Evaluation Criteria in Solid Tumors (RECIST), therefore avoiding toxic side effects and expensive, ineffective therapy. A total of 40 mice were implanted with human colon cancer cells: treatment-sensitive mice in control (n = 10, receiving saline) and treated (n = 10, receiving bevacizumab) groups and treatment-resistant mice in control (n = 10) and treated (n = 10) groups. Each mouse was imaged using 3D dynamic contrast-enhanced ultrasound with Definity microbubbles. Curvature learning, an unsupervised learning approach, quantized pixels into three classes—blue, yellow, and red—representing normal, intermediate, and high cancer probability, both at baseline and after treatment. Next, a curvature learning score was calculated for each mouse using statistical measures representing variations in these three color classes across each frame from cine ultrasound images obtained during contrast administration on a given day (intra-day variability) and between pre- and post-treatment days (inter-day variability). A Wilcoxon rank-sum test compared score distributions between treated, treatment-sensitive mice and all others. There was a statistically significant difference in tumor score between the treated, treatment-sensitive group (n = 10) and all others (n = 30) (p = 0.0051). Curvature learning successfully identified treatment response, detecting changes in tumor perfusion before changes in tumor size. A similar technique could be developed for humans.

Open Access Just Published
Relevant