Sort by
Evaluation of Bauhinia ungulata Essential Oil as a New Acetylcholinesterase Inhibitor from an in silico and in vitro Perspective in the Northern Amazon of Brazil.

The Bauhinia ungulata, also known by its common name "pata de vaca", is one of the species used in Brazil for medicinal purposes, and is commonly used for the treatment of diabetes. In this study, the authors studied the interaction between the chemical constituents which are present in the essential oil of Bauhinia ungulata (EOBU), collected in Boa Vista-RR, Legal Amazon, and their effects on the enzyme acetylcholinesterase (AChE) in the essential oil. The analysis that we perform includes proton magnetic resonance ( 1H NMR), enzymatic inhibition, molecular docking, in silico toxicity prediction, enrichment analysis, and target prediction for biological interactions. According to the tests performed on the essential oil, it obtained 100% inhibition of the enzyme AChE. During 1H NMR experiments, it was found that α- Bisabolol, one of the main components, had a significant alteration in its chemical shift. A molecular docking analysis confirmed that this compound binds to the AChE enzyme, which confirms the 1H NMR analysis. The results of this work showed that the major component of EOBU acted as a possible inhibitor of AChE enzyme in vitro and in silico assays. These results show that EOBU could be potentially applied in Alzheimer's disease treatment.

Open Access
Relevant
Anti-osteoarthritis, Bone Protective and Antiinflammatory Effect of Lusianthridin against Monosodium Iodoacetate Induced Osteoarthritis via Suppression of Inflammatory Pathway.

Osteoarthritis (OA) is characterized by the gradual deterioration and worsening of the knee joint, leading to both pain and deformity. The current research exhibited the anti-osteoarthritis effect of lusianthridin against monosodium iodoacetate (MIA) induced OA in rats. RAW cells were used for the cell viability. The inflammatory cytokines and mediators were estimated in the cell lines after the lipopolysaccharide (LPS) treatment. For the in vivo study, the rats were received the intraperitoneal administration of MIA (3 mg/kg) for the induction of OA. The rats were received the oral administration of lusianthridin (5, 10 and 20 mg/kg) and the body and organ weight estimated. Antioxidant, cytokines, inflammatory and matrix metalloproteinases (MMP) level were also estimated. The mRNA expression of MMP were also estimated. The lusianthridin treatment remarkably suppressed the cell viability. LPS induced RAW cell suppressed the level of nitrate, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), cyclooxygenase-2 (COX-2), prostaglandin (PGE2), MMP-2 and MMP-9 level. Lusianthridin remarkably altered the level of body weight and organ weight (liver, spleen, renal and heart weight). lusianthridin suppressed the oxidative stress via altered the level of antioxidant parameters. Lusianthridin significantly (p < 0.001) decreased the level of cartilage oligometrix matrix protein (COMP) and c-reactive protein (CRP); cytokines such as TNF-α, IL-1β, IL-6, IL-10; inflammatory parameters include 5- Lipoxygenase (5-LOX), COX-2, leukotriene B4 (LTB4), PGE2; transforming growth factor beta (TGF-β); MMP level like MMP-1, 3, 9, 13, respectively. Lusianthridin significantly suppressed the mRNA expression of MMP. Collectively, the result of the study showed that antiosteoarthritis effect of lusianthridin via suppression of inflammatory parameters.

Open Access
Relevant
Anti-inflammatory Effects of Food Ingredients on Mice Adipose Tissues and Adipocytes.

In 2021, we published three papers related to the anti-inflammatory effects of food ingredients. The present paper reports the effects of vitamin E homologs and sweet basil powder. In these papers, we investigated whether inflammation occurs in the adipose tissue of mice fed a high-fat and high-sucrose diet for 16 weeks. Inflammatory cytokine gene expression was significantly higher in the epididymal fat of the high-fat and high-sucrose diet group than in that of the control diet group. However, the addition of α-tocopherol or δ-tocopherol to the diet could not restrain the inflammation of mice epididymal fats. Thereafter, we investigated the anti-inflammatory effects of α- and δ-tocopherols using the co-cultured cells. Consequently, we clarified that δ-tocopherol inhibited the increase in the gene expressions of inflammatory cytokines. We also examined the effect of sweet basil powder on a similar obese mice model. The final body weight in the high-fat and high-sucrose group that received sweet basil powder was significantly lower than that in the high-fat and high-sucrose diet group. Liver weights were also significantly lower in the high-fat and high-sucrose diet group that received sweet basil powder than in the high-fat and high-sucrose diet group, although adipose tissue weights were unchanged in both groups. Furthermore, sweet basil powder tended to inhibit in lipid synthesis in the mice livers. Therefore, we suggested that sweet basil powder inhibited fatty acid synthesis in mice livers, thereby suppressing liver enlargement, and resulting in body weight loss. Moreover, the gene expression of MCP-1 in the adipose tissue of mice fed a high-fat and high-sucrose diet added with sweet basil powder was significantly lower than that of mice fed a high-fat and high-sucrose diet for 12 weeks. Therefore, sweet basil powder inhibited inflammation onset in the adipose tissue of mice. Taken together, the results suggested that food ingredients, especially vitamin E homologs and sweet basil powder, have anti-inflammatory effects on mice adipose tissue and mice adipocyte-induced inflammation.

Open Access
Relevant
Concentration of Diynoic Acids in Bicellar Mixtures Derived from Those Phase Separation.

Bicellar mixtures containing diacetylene molecules, such as diynoic acids, can be used as parent materials for functional membranes. A bicellar mixture consisting of a diynoic acid-10,12-tricosadiynoic acid (TCDA)-, a phospholipid-1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)-, and a detergent-3-[(3-cholamidopropyl) dimethylammonio]-2-hydroxypropanesulfonate (CHAPSO)-was evaluated for its morphology and packing of TCDA molecules in its bicellar mixture. A TCDA/DMPC vesicle was prepared at different molar ratios, TCDA/DMPC = 2/8, 5/5, and 8/2; a TCDA/DMPC/CHAPSO bicellar mixture was prepared by mixing a CHAPSO solution with a TCDA/DMPC vesicle solution as a detergent at different composition ratios, x TCDA/DMPC = [TCDA/DMPC]/([TCDA/DMPC]+[CHAPSO]), of 1.0, 0.70, 0.50, and 0.30. A DMPC molecule formed a bilayer membrane structure and was used to suppress its precipitation. The packing density of the TCDA/DMPC/CHAPSO bicellar mixtures was increased by mixing a CHAPSO molecule in x TCDA/DMPC = 1.0 to 0.70 or 0.50. A TEM image of a TCDA/DMPC/CHAPSO bicellar mixture showed many discoidal assemblies at x TCDA/DMPC = 0.5 of TCDA/DMPC = 5/5. Polymerization of the TCDA molecules in the bicellar mixture by UV light suggested an ordered arrangement of TCDA. Polymerization at x TCDA/DMPC = 0.70 and 0.50 correlated with improved packing density.

Open Access
Relevant
Characterization of Palm Fatty Acid Distillate, Diacylglycerol Regioisomers, and Esterification Products Using High-Performance Size Exclusion Chromatography.

High-performance size exclusion chromatography (HPSEC) equipped with an evaporative light scattering detector (ELSD) was utilized for characterization of palm fatty acid distillate (PFAD) and its esterified products, with a particular focus on lipid profiles and diacylglycerol (DAG) regioisomers. The separation of triacylglycerol (TAG), DAG, monoacylglycerol (MAG), and free fatty acid (FFA) was achieved through a single 100-Å Phenogel column, coupled with a 2-cm C18 guard, utilizing toluene/acetic acid (100:0.25, v/v) as the mobile phase. This separation was based on size sieving principles and the interactions between the hydroxyl group(s) and the Phenogel matrix. The limit of detection (LOD) and limit of quantification (LOQ) for the esterified PFAD products analyzed by this method fell within the range of 4.8-5.5 μg/mL and 14.7-16.7 μg/mL, respectively. Additionally, the same column, paired with a 2-cm silica guard and a mobile phase comprised of toluene/isooctane/acetic acid (35:65:0.15, v/v/v), was used for the characterization of DAG regioisomers within the esterified PFAD. LODs and LOQs for sn-1,3-DAG and sn- 1,2-DAG were determined to be 39.2 and 118.7 μg/mL, and 32.8 and 99.5 μg/mL, respectively. Investigation of esterified PFAD products prepared using 4% H2SO4 at 120°C. After 2 h, the analysis revealed the highest MAG content at 31.85%, accompanied by 51.54% DAG, 2.35% TAG, and a residual 14.27% FFA. Notably, as the reaction time extended, the MAG content decreased, while both DAG and TAG levels exhibited an increasing trend. Further examination of DAG regioisomers during PFAD esterification, under varying catalyst concentrations (2-10%) and reaction temperatures (80-140°C), demonstrated a significant increase in the percentage of sn-1,3-DAG, inversely correlated with the reduction in FFA from 2% H 2 SO 4 and 80°C onwards. Remarkably, the percentage of sn-1,2-DAG remained relatively stable regardless of changes in catalyst concentrations or temperatures, confirming its susceptibility to isomerization into the thermodynamically more stable sn-1,3-DAG form. This study provides valuable insights into the composition and behavior of esterified PFAD products.

Open Access
Relevant