Sort by
Heat Shock Factor 1 forms condensates and restructures the yeast genome before activating target genes

In insects and mammals, 3D genome topology has been linked to transcriptional states yet whether this link holds for other eukaryotes is unclear. Using both ligation proximity and fluorescence microscopy assays, we show that in Saccharomyces cerevisiae , Heat Shock Response ( HSR ) genes dispersed across multiple chromosomes and under the control of Heat Shock Factor (Hsf1) rapidly reposition in cells exposed to acute ethanol stress and engage in concerted, Hsf1-dependent intergenic interactions. Accompanying 3D genome reconfiguration is equally rapid formation of Hsf1-containing condensates. However, in contrast to the transience of Hsf1-driven intergenic interactions that peak within 10-20 min and dissipate within 1 h in the presence of 8.5% (v/v) ethanol, transcriptional condensates are stably maintained for hours. Moreover, under the same conditions, Pol II occupancy of HSR genes and RNA expression are detectable only later in the response and peak much later (>1 h). This contrasts with the coordinate response of HSR genes to thermal stress (39°C) where Pol II occupancy, transcription, intergenic interactions, and formation of Hsf1 condensates are all rapid yet transient (peak within 2.5-10 min and dissipate within 1 h). Therefore, Hsf1 forms condensates, restructures the genome and transcriptionally activates HSR genes in response to both forms of proteotoxic stress but does so with strikingly different kinetics. In cells subjected to ethanol stress, Hsf1 forms condensates and repositions target genes before transcriptionally activating them.

Open Access Just Published
Relevant
Iterative Knowledge Distillation through Feedback-Driven Learning Cycles

Large code models (LCMs) have remarkably advanced the field of code intelligence. Despite their impressive capabilities, they still face practical employment challenges, such as high costs, limited accessibility of proprietary LCMs, and adaptability issues of ultra-large LCMs. These challenges highlight the critical need for more accessible, lightweight yet effective LCMs. In this paper, we propose IterKD, an Iter Knowledge Distillation framework, which aims at continually transferring the programming capabilities of larger, advanced LCMs (Teacher) to smaller, less powerful LCMs (Student). IterKD consists of three stages in one cycle: (1) Correct-and-Fault Knowledge Delivery stage aims at improving the student models capability to recognize errors while ensuring its basic programming skill during the knowledge transferring, which involves correctness-aware supervised learning and fault-aware contrastive learning methods. (2) Multi-view Feedback stage aims at measuring the quality of results generated by the student model from two views, including model-based and static tool-based measurement; (3) Feedback-based Knowledge Update stage aims at updating the student model adaptively by generating new questions at different difficulty levels, in which the difficulty levels are categorized based on the feedback in the last stage. By performing the training cycle iteratively, the student model is continuously refined through learning more advanced programming skills from the teacher model. Finally, based on the proposed IterKD framework, we develop a lightweight yet effective LCM, named IterCoder, which is built upon CodeLlama-7B. Experimental results show that IterCoder achieves a Pass@1 score of 65.2 on the HumanEval benchmark, outperforming over-30B-sized LCMs by an average of 47.51% and surpassing comparable-sized LCMs by an average of 118.47%.

Just Published
Relevant
Improved Tangential Interpolation-based Multi-input Multi-output Modal Analysis of a Full Aircraft

In the field of Structural Dynamics, modal analysis is the foundation of System Identification and vibration-based inspection. However, despite their widespread use, current state-of-the-art methods for extracting modal parameters from multi-input multi-output (MIMO) frequency domain data are still affected by many technical limitations. Mainly, they can be computationally cumbersome and/or negatively affected by close-in-frequency modes. The Loewner Framework (LF) was recently proposed to alleviate these problems with the limitation of working with single-input data only. This work proposes a computationally improved version of the Lowner Framework, or iLF, to extract modal parameters more efficiently. Also, the proposed implementation is extended in order to handle multi-input multi-output data in the frequency domain. This new implementation is compared to state-of-the-art methods such as the frequency domain implementations of the Least Square Complex Exponential method and the Numerical Algorithm for Subspace State Space System Identification on numerical and experimental datasets. More specifically, a finite element model of a 3D Euler-Bernoulli beam is used for the baseline comparison and the noise robustness verification of the proposed MIMO iLF algorithm. Then, an experimental dataset from MIMO ground vibration tests of a trainer jet aircraft with over 91 accelerometer channels is chosen for the algorithm validation on a real-life application. Excellent results are achieved in terms of accuracy, robustness to noise, and computational performance by the proposed improved MIMO method, both on the numerical and the experimental datasets. The MIMO iLF MATLAB implementation is shared in the work supplementary material.

Just Published
Relevant
Superdiffusion of energetic particles at shocks: A Lévy Flight model for acceleration

In the Heliosphere, power-law particle distributions are observed e.g. upstream of interplanetary shocks, which can result from superdiffusive transport. This non-Gaussian transport regime may result from intermittent magnetic field structures. Recently, we showed that a L\'evy flight model reproduces the observed features at shocks: power-law distributions upstream and enhanced intensities at the shock. We extend the L\'evy flight model to study the impact of superdiffusive transport on particle acceleration at shocks. The acceleration time scale and spectral slope are compared to Gaussian diffusion and a L\'evy walk model. The fractional transport equation is solved by sampling the number density with the corresponding stochastic differential equation that is driven by an alpha-stable L\'evy distribution. For both Gaussian and superdiffusive transport we use a modified version of CRPropa 3.2. We obtain the number density and energy spectra for constant and energy-dependent anomalous diffusion and find, compared to the case of Gaussian diffusion, harder energy spectra at the shock as well as faster acceleration. The spectral slope is even harder than predicted for L\'evy walks. L\'evy flight models of superdiffusive transport lead to observed features in the Heliosphere. We further show that superdiffusive transport impacts the acceleration process by changing the probability to escape the shock. The flexibility of the L\'evy flight model allows for further studies in the future, taking the shock geometry and magnetic field structure into account.

Just Published
Relevant