Sort by
Influence of TPMT and NUDT15 Genetic Polymorphisms on Mercaptopurine Pharmacokinetics in Healthy Volunteers.

Aims: This study aimed to investigate the impact of genetic polymorphisms of thiopurine methyltransferase (TPMT) and NUDT15 on pharmacokinetics profile of mercaptopurine in healthy adults in China. Methods: Blood samples were obtained from 45 healthy adult volunteers who were administered azathioprine. Genomic DNA was extracted and sequenced for TPMT and NUDT15. The plasma concentrations of 6-mercaptopurine (6-MP) were determined by ultra-performance liquid chromatography-tandem mass spectrometry. Finally, pharmacokinetic parameters were calculated based on the time-concentration curve. Results: Among the 45 healthy adult volunteers enrolled in the study, two TPMT allelic variants and three NUDT15 allelic variants were detected. In total, six genotypes were identified, including TPMT*1/*1&NUDT15*1/*1, TPMT*1/*1&NUDT15*1/*2, TPMT*1/*1&NUDT15*1/*9, TPMT*1/*1&NUDT15*2/*5, TPMT*1/*6&NUDT15*1/*2, and TPMT*1/*3&NUDT15*1/*2. The results indicated that Area Under Curve (AUC) of 6-MP in volunteers with TPMT*1/*3&NUDT15*1/*2 and TPMT*1/*6&NUDT15*1/*2 were 1.57-1.62-fold higher than in individuals carrying the wild type (TPMT*1/*1&NUDT15*1/*1). Compared with wild type, the half-life (T1/2) of TPMT*1/*6&NUDT15*1/*2 was extended by 1.98 times, whereas T1/2 of TPMT*1/*3&NUDT15*1/*2 decreased by 67%. The maximum concentration (Cmax) of TPMT*1/*3&NUDT15*1/*2 increased significantly by 2.15-fold, whereas the corresponding clearance (CL/F) decreased significantly by 58.75%. Conclusion: The findings of this study corroborate the notion that various genotypes of TPMT and NUDT15 can impact the pharmacokinetics of mercaptopurine, potentially offering foundational insights for personalized mercaptopurine therapy.

Just Published
Relevant
Genomic Landscape of Osteosarcoma of Bone in an Older-Aged Patient Population and Analysis of Possible Etiologies Based on Molecular Signature.

Background: Osteosarcoma (OS), the most common primary malignant bone tumor, occurs mostly in the pediatric and adolescent (P/A) population where it has been subject to intense study whereas OS arising in the older-aged adult population has undergone less scrutiny. Materials and Methods: In this study, we assess the molecular aberrations detected in eight older adult patients (>59 years of age) with OS of bone by whole-exome sequencing (WES) on formalin-fixed, paraffin-embedded tissue and quantified the contributions of endogenous and exogenous mutational processes to tumor mutational burden and to tumorigenesis through computational analysis. Results: We identified 86 clinically significant somatic mutations. TP53 mutations occurred in OSs of three patients and one patient harbored a pathogenic germline mutation of TP53. Loss-of-heterozygosity of DNA-damage repair genes occurred in all six tumors evaluated. Computational analysis of single nucleotide variants within each tumor detected eight distinct mutagenic processes of which age-associated mutational processes, thiopurine chemotherapy, and defective homologous DNA recombination repair contributed the most to both tumor mutation burden and tumor pathogenesis. Conclusion: The genomic landscape of our older OS patients deciphered by WES is extremely diverse with only 15% of mutated somatic genes uncovered in our study previously described in P/A-enriched OS studies. Endogenous age-related mutagenic processes, defective DNA homologous recombination repair, and exogenous effects of chemotherapy are mainly responsible for pathogenic mutations in OS occurring in our cohort.

Just Published
Relevant
Mannose-Binding Lectin Gene Variants as Disease Susceptibility Biomarkers in Rheumatoid Arthritis.

Background: Rheumatoid arthritis (RA) is a chronic, inflammatory autoimmune disease characterized by progressive destruction of peripheral joints. About 1% of the human population worldwide is suffering from this disease. The pathophysiology of RA is largely being influenced by immune dysregulation. Mannose-binding lectin (MBL), an acute-phase protein, has been reported to play an important role in pathogenesis of RA by the activation of complement pathway. Various studies documented the established the role of MBL in pathogenesis of various autoimmune diseases, including RA. MBL protein is encoded by gene MBL2, mapped on chromosome 10q11.2-q21. Objective: Both MBL serum levels and activity are mainly determined genetically by its variants. So considering the putative clinical role of MBL2, this case-control association study was designed to assess its six functional variants in a northwestern Indian cohort. Methods: Genetic typing of six MBL2 variants was done by amplification refractory mutation system-polymerase chain reaction. Data were analyzed using suitable statistical tools. Results: Significant difference has been observed in genotypic and allelic distribution between cases and controls for rs11003125. Comparison of allelic distribution for rs1800450 showed significantly high prevalence of A allele in cases than controls. Conclusion: These results indicate that MBL2 variants may act as plausible marker for susceptibility toward RA. Keeping this in view, it is pertinent to screen these variants in other population groups of India.

Relevant
METTL5: A Potential Biomarker for Nonsmall Cell Lung Cancer That Promotes Cancer Cell Proliferation by Interacting with IGF2BP3.

Objective: To examine if METTL5 promotes the proliferation of nonsmall cell lung cancer (NSCLC) cells by interacting with IGF2BP3. Methods: The expression patterns of METTL5 and IGF2BP3 in NSCLC tissues, their relationship with survival rate, and their correlation were analyzed using bioinformatics and clinical sample analyses. The effects of METTL5 overexpression and IGF2BP3 knockdown, as well as those of METTL5 knockdown and IGF2BP3 overexpression, on the proliferation of NSCLC cells were analyzed by transfecting appropriate constructs. The interaction between METTL5 and IGF2BP3 was verified using the co-immunoprecipitation (Co-IP) assay. The invivo effects of METTL5 and IGF2BP3 on NSCLC growth were analyzed using the tumor-bearing nude mouse model. Results: METTL5 and IGF2BP3 expression levels were positively correlated and were associated with poor clinical prognosis. The METTL5 and IGF2BP3 expression levels were upregulated in the clinical NSCLC samples. IGF2BP3 expression did not affect METTL5 expression but was regulated by METTL5. IGF2BP3 overexpression mitigated the METTL5 knockdown-induced impaired cell proliferation. Meanwhile, IGF2BP3 knockdown suppressed METTL5-mediated NSCLC cell proliferation. The Co-IP assay results revealed the interaction between METTL5 and IGF2BP3 in NSCLC cells. IGF2BP3 knockdown suppressed tumor growth, whereas IGF2BP3 overexpression enhanced tumor volume and quality. Conclusion: METTL5 induces NSCLC cell proliferation by interacting with IGF2BP3. Thus, METTL5 is a potential biomarker and a therapeutic target for NSCLC.

Relevant
Targeted Next-Generation Sequencing Analysis Reveals a Novel Genetic Variant in MYO6 Gene in an Indian Family with Postlingual Nonsyndromic Hearing Loss.

Background: Hereditary nonsyndromic hearing loss (NSHL) is an extremely heterogeneous disorder, both genetically and clinically. Myosin VI (MYO6) pathogenic variations have been reported to cause both prelingual and postlingual forms of NSHL. Postlingual autosomal dominant cases are often overlooked for genetic etiology in clinical setups. In this study, we used next-generation sequencing (NGS)-based targeted deafness gene panel assay to identify the cause of postlingual hearing loss in an Indian family. Methods: The proband and his father from a multigenerational Indian family affected by postlingual hearing loss were examined via targeted capture of 129 deafness genes, after excluding gap junction protein beta 2 (GJB2) pathogenic variants by Sanger sequencing. NGS data analysis and co-segregation of the candidate variants in the family were carried out. The variant effect was predicted by in silico tools and interpreted following American College of Medical Genetics and Genomics-Association for Molecular Pathology guidelines. Results: A novel heterozygous transversion c.3225T>G, p.(Tyr1075*) in MYO6 gene was identified as the disease-causing variant in this family. This stop-gained variant is predicted to form a truncated myosin VI protein, which is devoid of crucial cargo-binding domain. PCR-RFLP screening in 200 NSHL cases and 200 normal-hearing controls showed the absence of this variant indicating its de novo nature in the population. Furthermore, we reviewed MYO6 variants reported from various populations to date. Conclusions: To the best of our knowledge, this is the first family with MYO6-associated hearing loss from an Indian population. The study also highlights the importance of deafness gene panels in molecular diagnosis of GJB2-negative pedigrees, contributing to genetic counseling in the affected families.

Relevant
The Evaluation of the Genetic Variation Types of the Uridine Diphosphate Glucuronosyl Transferase 1A1 Gene by Next-Generation Sequencing and Their Effects on Bilirubin Levels in Obese Children.

Background and Objectives: Obesity is a major nutritional problem with an increasing prevalence among children and adolescents. The uridine-diphosphate-glucuronosyl-transferase1A1 (UGT1A1) gene encodes the UDP-glucuronosyl transferase enzyme, converting the toxic form of bilirubin to a soluble, nontoxic form. There are yet to be studies on the evaluation of the UGT1A1 variant types detected by next-generation sequencing (NGS) and their effects on bilirubin levels in nonsyndromic obese children. Methods: Forty-five children with body mass index (BMI) >95 percentile (p) constituted the obesity group and fourteen healthy children with BMI <85p constituted the control group. Anthropometric, clinical features, and biochemical parameters were evaluated. Furthermore, the UGT1A1 gene was sequenced by NGS. Results: The obese patients had lower total, direct, and indirect bilirubin levels (p = 0.422, 0.026, and 0.568, respectively). In addition, obese patients had more genetic variations in the UGT1A1 gene compared with the control group (62.2% and 50%, respectively). We found that children with variations had higher total direct and indirect bilirubin levels compared with those without variation (p = 0.016, 0.028, and 0.015, respectively). Children diagnosed with obesity in the first two years of their life had fewer genetic variations and lower total bilirubin levels (p = 0.000 and 0.013, respectively). Conclusions: It is assumed that bilirubin can be protective against many chronic diseases. Although bilirubin levels are found to be lower in obese children compared with the control group, some variations in the UGT1A1 gene may be supported by raising bilirubin. We suggest that high bilirubin levels caused by those UGT1A1 variations may be protective against obesity and its many negative effects.

Relevant
HFE and Non-HFE Hereditary Hemochromatosis Based on Screening of 854 Individuals: 12 Years of an Iranian Experience.

Introduction: The genetics of hereditary hemochromatosis (HH) is understudied in Iran. Here, we report the result of genetic screening of 854 individuals, referred as "suspected cases of HH," to a diagnostic laboratory in Iran over a 12-year period. Materials and Methods: From 2011 to 2012, 121 cases were screened for HH using Sanger sequencing of HFE exons. After 2012, this method was replaced by a commercial reverse hybridization assay (RHA) targeting 18 variants in the HFE, TFR2, and FPN1(SLC40A1) genes and 733 cases were screened using this method. Results: From the total studied population, HH was confirmed by genetic diagnosis in only seven cases (0.82%): two homozygotes for HFE:C282Y and five homozygotes for TFR2:AVAQ 594-597 deletion. In 254 cases (29.7%), H63D, C282Y, S65C, and four other HFE variants not targeted by RHA were identified. Although the resulting genotypes in the latter cases did not confirm HH, some of them were known modifying factors of iron overload or could cause HH in combination with a possibly undetected variant. No variant was detected in 593 cases (69.4%). Conclusion: This study showed that the spectrum of genetic variants of HH in the Iranian population includes HFE and TFR2 variants. However, HH was not confirmed in the majority (99.2%) of suspected cases. This could be explained by limitations of our genetic diagnostics and possible inaccuracies in clinical suspicion of HH. A cooperative clinical and genetic investigation is proposed as a solution to this issue.

Relevant
Association of ACTN4 Gene Mutation with Primary Nephrotic Syndrome in Children in Guangxi Autonomous Region, China.

Objective: To investigate the association between ACTN4 gene mutation and primary nephrotic syndrome (PNS) in children in Guangxi Autonomous Region, China. Methods: The high-throughput sequencing technology was used to sequence ACTN4 gene in 155 children with PNS in Guangxi Autonomous Region in China, with 98 healthy children serving as controls. Twenty-three exon-specific capture probes targeting ACTN4 were designed and used to hybridize with the genomic DNA library. The targeted genomic region DNA fragments were enriched and sequenced. The protein levels of ACTN4 in both case and control groups were quantified using ELISA method. Results: Bioinformatics analysis revealed five unique ACTN4 mutations exclusively in patients with PNS, including c.1516G>A (p.G506S) on one exon in 2 patients, c.1442 + 10G>A at the splice site in 1 patient, c.1649A>G (p.D550G) on exon in 1 patient, c.2191-4G>A at the cleavage site in 2 patients, and c.2315C>T (p.A772V) on one exon in 1 patient. The c.1649A>G (p.D550G) and c.2315C>T (p.A772V) were identified from the same patient. Notably, c.1649A>G (p.D550G) represents a novel mutation in ACTN4. In addition, three other ACTN4 polymorphisms occurred in both case and control groups, including c.162 + 6C>T (1 patient in case group and 2 patients in control group), c.572 + 11G>A (1 patient in case group and 2 patients in control group), and c.2191-5C>T (4 patients in the case group and 3 patients in control group). The serum ACTN4 concentration in the case group was markedly higher, averaging 544.7 ng/mL (range: 264.6-952.6 ng/mL), compared with 241.20 ng/mL (range: 110.75-542.35 ng/mL) in the control group. Conclusion: Five ACTN4 polymorphisms were identified among children with PNS in Guangxi Autonomous Region, China, including the novel mutation c.1649A>G. The lower serum levels of α-actinin-4 in the case group suggest that this protein might play a protective role in PNS.

Relevant
The Association between Obesity Susceptibility and Polymorphisms of MC4R, SH2B1, and NEGR1 in Tibetans.

Background: A high-altitude environment has inhibitory effects on obesity. Tibetans are not a high-risk population for obesity, but there are still obese individuals within that population. Obesity has become a worldwide health problem, and previous studies have found that obesity is closely associated with hereditary factors. Few studies have investigated obesity in Tibetans, and the association between gene polymorphisms and obesity in Tibetans remains unclear. Methods: Our study investigated the fat mass of 140 native Tibetan individuals (70 men and 70 women) from Lhasa and analyzed the associations between polymorphisms of melanocortin 4 receptor (MC4R), Src homology 2B adapter protein 1 (SH2B1), and neuronal growth regulator 1 (NEGR1) and obesity. Result: Among Tibetan individuals, there were differences in genotype and allele frequencies between those in the obesity group and those in the healthy group at MC4R (rs17782313) and SH2B1 (rs7359397). The polymorphisms of MC4R (rs17782313) were associated with fat mass and obesity in Tibetan men and women, and there was an association between SH2B1 (rs7359397) polymorphisms and fat mass and obesity in Tibetan men. However, polymorphisms of NEGR1 (rs3101336) were not associated with fat mass or obesity in Tibetan individuals. Conclusion: Among Tibetan individuals, polymorphisms of MC4R (rs17782313) and SH2B1 (rs7359397) were associated with obesity, but NEGR1 (rs3101336) polymorphisms were not associated with obesity.

Relevant