Sort by
Exploring the Triplet State of Chlorophyll a in Mesoporous Silica Matrices by Time-Resolved EPR

AbstractChlorophyll is a pivotal molecule in photosynthesis due to its ability to absorb solar light and start the photochemical process. The chlorophyll triplet state is easily populated from the light-induced singlet excited state via Intersystem Crossing (ISC) and can react with oxygen generating singlet oxygen, posing a threat to the stability of chlorophyll, but also an opportunity for photodynamic therapy. Here, we focus on the study of the photo-physical properties of chlorophyll a and WSCP (Water-Soluble Chlorophyll Protein, a protein binding the pigment), which have been adsorbed in mesoporous silica matrices. We adopt SBA-15, a silica matrix with well-ordered hexagonal structure with pores of 70 Å of diameter. The triplet formed upon illumination in these systems is studied by time-resolved EPR spectroscopy. Analysis of the EPR spectra shows that the triplet state is very sensitive to the inclusion in the pores of SBA-15 modifying its spin polarization. Chl a in SBA-15 loses its central metal ion, while its structure remains unchanged if the mesoporous silica is previously soaked into a basic solution before Chl a adsorption, as revealed by its zero-field splitting parameters of the triplet state. WSCP is readily included in the silica matrix, but its embedded pigments are no longer protected by the protein core.

Open Access Just Published
Relevant
On the Microstructure and Dynamics of Membranes Formed by Lipid as From Stenotrophomonas maltophilia, a Member of Gut Microbiome: An EPR Study

AbstractLipid As are the main components of the external leaflet of the outer membrane of Gram-negative bacteria. Their molecular structure has evolved to allow the bacteria survival in specific environments. In the present work, we investigate how and to what extent lipid membranes that include in their composition lipid A molecules of a bacterium of the gut microbiota, Stenotrophomonas maltophilia, differ from those formed by the lipid A of the common Gram-negative bacterium Salmonella enterica, which is not specific to the gut and is here used as a reference. Electron Paramagnetic Resonance (EPR) spectroscopy, using spin-labelled lipids as molecular probes, allows the segmental order of the acyl chain and the polarity across the bilayer to be analyzed in detail. Both considered lipid As cause a stiffening of the outermost segments of the acyl chains. This effect increases with increasing the lipid A content and is stronger for the lipid A extracted from Stenotrophomonas maltophilia than for that extracted from Salmonella enterica. At the same time, the local polarity of the bilayer region just below the interface increases. As the inner core of the bilayer is considered, it is found that the lipid A from Salmonella enterica causes a local disorder and a significant reduction of the local polarity, an effect not found for the lipid A from Stenotrophomonas maltophilia. These results are interpreted in terms of the different lengths and distributions of the acyl tails in the two lipid As. It can be concluded that the symmetrically distributed short tails of the lipid A from Stenotrophomonas maltophilia favors a regular packing within the bilayer.

Open Access
Relevant