Sort by
Technoeconomic feasibility of photovoltaic recycling

AbstractPhotovoltaic (PV) modules are a key technology to aid the imminent transition from carbon‐based energy. End‐of‐life crystalline silicon PV modules produce a waste stream that is predominantly landfilled due to the recycling challenges associated with PV reuse economics. Current practices recycle the aluminum frame and repurpose the junction box but landfill the rest of the module. The primary challenge in recycling the remaining module is finding a technoeconomically viable method for separating the silicon and glass from the ethylene vinyl acetate (EVA) layers. This issue will rapidly expand with time as it is estimated that flat glass production for solar panels is currently unable to meet the demand for PV. Current literature suggests that chemical, thermal, and mechanical delamination offer economically feasible solutions under ideal circumstances. In this work we evaluate these methods using end‐of‐life panels and assess the economic viability. The technoeconomic study presented here suggests the most economically viable option for disposing of end‐of‐life solar panels, given current technology, is landfilling. Thermal delamination may offer an alternative route in the future. Financial incentives, which can be quantified with this work, may be required to kickstart PV recycling to help bridge externalities around environmental impact.

Relevant
Evaluation method of dynamic indentation behavior of glass based on electromagnetic induction phenomena

AbstractContact damage of glass is one of the most crucial issues for glass products. To develop strong and tough glass products and to compare damage resistance among glass compositions, a simple method for evaluating the mechanical response of glass during contact is required not only for glass mechanists but also for glass customers and suppliers. Although it is well known that the quasi‐static Vickers indentation test is one of the simplest and most useful methods to evaluate hardness and brittleness in glass, the indentation response of glass under the indenter at higher impact velocities remains to be quantitively understood because of the difficulty of measurement and limited experimental works. In this study, therefore, the dynamic indentation behavior of soda‐lime glass is evaluated by using a lab‐made free‐drop indentation set‐up with the coils for detecting electromotive forces (EMFs). The cono‐spherical indenter made of tungsten carbide attached with a neodymium magnet was employed to generate the EMFs when the indenter passed through the coils located near the glass sample. The impact load versus indentation depth curve during the impact within a few tens of microseconds was successfully obtained both for an elastic contact and for an inelastic contact. Under an elastic condition, where no residual indent nor any cracks were left on the glass surface after the test, it is confirmed that there is almost no hysteresis in the impact load versus indentation depth curve and that the curve can be reproduced by the Hertzian analytical solution. Under an inelastic condition, on the other hand, it is found that the hysteresis in the impact load versus indentation depth curve stems from inelastic phenomena, such as plastic deformation (shear flow and/or permanent densification) and cracking. These results suggest that the dynamic indentation technique based on electromagnetic induction phenomena is a useful and effective tool for evaluating the mechanical responses of glasses during the impact.

Relevant