Sort by
Statistics of Matrix Elements of Local Operators in Integrable Models

We study the statistics of matrix elements of local operators in the basis of energy eigenstates in a paradigmatic, integrable, many-particle quantum theory, the Lieb-Liniger model of bosons with repulsive delta-function interactions. Using methods of quantum integrability, we determine the scaling of matrix elements with system size. As a consequence of the extensive number of conservation laws, the structure of matrix elements is fundamentally different from, and much more intricate than, the predictions of the eigenstate thermalization hypothesis for generic models. We uncover an interesting connection between this structure for local operators in interacting integrable models and the one for local operators that are not local with respect to the elementary excitations in free theories. We find that typical off-diagonal matrix elements ⟨μ|O|λ⟩ in the same macrostate scale as exp(−cOLln(L)−LMμ,λO), where the probability distribution function for Mμ,λO is well described by Fréchet distributions and cO depends only on macrostate information. In contrast, typical off-diagonal matrix elements between two different macrostates scale as exp(−dOL2), where dO depends only on macrostate information. Diagonal matrix elements depend only on macrostate information up to finite-size corrections. Published by the American Physical Society 2024

Open Access Just Published
Relevant
Anderson Localization of Walking Droplets

Understanding the ability of particles to maneuver through disordered environments is a central problem in innumerable settings, from active matter and biology to electronics. Macroscopic particles ultimately exhibit diffusive motion when their energy exceeds the characteristic potential barrier of the random landscape. In stark contrast, wave-particle duality causes electrons in disordered media to come to rest even when the potential is weak—a remarkable phenomenon known as Anderson localization. Here, we present a hydrodynamic active system with wave-particle features, a millimetric droplet self-guided by its own wave field over a submerged random topography, whose dynamics exhibits localized statistics analogous to those of electronic systems. Consideration of an ensemble of particle trajectories reveals a suppression of diffusion when the guiding wave field extends over the disordered topography. We rationalize mechanistically the emergent statistics by virtue of the wave-mediated resonant coupling between the droplet and topography, which produces an attractive wave potential about the localization region. This hydrodynamic analog, which demonstrates how a classical particle may localize like a wave, suggests new directions for future research in various areas, including active matter, wave localization, many-body localization, and topological matter. Published by the American Physical Society 2024

Open Access Just Published
Relevant
Enumeration and Representation Theory of Spin Space Groups

Fundamental physical properties, such as phase transitions, electronic structures, and spin excitations, in all magnetic ordered materials, were ultimately believed to rely on the symmetry theory of magnetic space groups. Recently, it has come to light that a more comprehensive group, known as the spin space group (SSG), which combines separate spin and spatial operations, is necessary to fully characterize the geometry and underlying properties of magnetic ordered materials. However, the basic theory of SSG has seldom been developed. In this work, we present a systematic study of the enumeration and the representation theory of the SSG. Starting from the 230 crystallographic space groups and finite translation groups with a maximum order of eight, we establish an extensive collection of over 100 000 SSGs under a four-index nomenclature as well as international notation. We then identify inequivalent SSGs specifically applicable to collinear, coplanar, and noncoplanar magnetic configurations. To facilitate the identification of the SSG, we develop an online program that can determine the SSG symmetries of any magnetic ordered crystal. Moreover, we derive the irreducible corepresentations of the little group in momentum space within the SSG framework. Finally, we illustrate the SSG symmetries and physical effects beyond the framework of magnetic space groups through several representative material examples, including a candidate altermagnet RuO2, spiral spin polarization in the coplanar antiferromagnet CeAuAl3, and geometric Hall effect in the noncoplanar antiferromagnet CoNb3S6. Our work advances the field of group theory in describing magnetic ordered materials, opening up avenues for deeper comprehension and further exploration of emergent phenomena in magnetic materials. Published by the American Physical Society 2024

Open Access
Relevant
Enumeration of Spin-Space Groups: Toward a Complete Description of Symmetries of Magnetic Orders

Symmetries of three-dimensional periodic scalar fields are described by 230 space groups (SGs). Symmetries of three-dimensional periodic (pseudo)vector fields, however, are described by the spin-space groups (SSGs), which were initially used to describe the symmetries of magnetic orders. In SSGs, the real-space and spin degrees of freedom are unlocked in the sense that an operation could have different spatial and spin rotations. SSGs give a complete symmetry description of magnetic structures and have natural applications in the band theory of itinerary electrons in magnetically ordered systems with weak spin-orbit coupling. , a concept raised recently that belongs to the symmetry-compensated collinear magnetic orders but has nonrelativistic spin plitting, is well described by SSGs. Because of the vast number and complicated group structures, SSGs have not yet been systematically enumerated. In this work, we exhaust SSGs based on the invariant subgroups of SGs, with spin operations constructed from three-dimensional (3D) real representations of the quotient groups for the invariant subgroups. For collinear and coplanar magnetic orders, the spin operations can be reduced into lower-dimensional real representations. As the number of SSGs is infinite, we consider only SSGs that describe magnetic unit cells up to 12 times crystal unit cells. We obtain 157 289 noncoplanar, 24 788 coplanar-noncollinear, and 1421 collinear SSGs. The enumerated SSGs are stored in an online database with a user-friendly interface. We develop an algorithm to identify SSGs for realistic materials and find SSGs for 1626 magnetic materials. We also discuss several potential applications of SSGs, including the representation theory, topological states protected by SSGs, structures of spin textures, and refinement of magnetic neutron diffraction patterns using SSGs. Our results serve as a solid starting point for further studies of symmetry and topology in magnetically ordered materials. Published by the American Physical Society 2024

Open Access
Relevant
Spin Space Groups: Full Classification and Applications

In this work, we exhaust all the spin space symmetries, which fully characterize collinear, noncollinear, and commensurate spiral as well as incommensurate spiral magnetism, etc., and investigate enriched features of electronic bands that respect these symmetries. We achieve this by systematically classifying the so-called spin space groups (SSGs)—joint symmetry groups of spatial and spin operations that leave the magnetic structure unchanged. Generally speaking, they are accurate (approximate) symmetries in systems where spin-orbit coupling (SOC) is negligible (finite but weaker than the energy scale of interest), but we also show that specific SSGs could remain valid even in the presence of strong SOC. In recent years, SSGs have played increasingly pivotal roles in various fields such as altermagnetism, topological electronic states, and topological magnon, etc. However, due to its complexity, a complete SSG classification has not been completed up to now. By representing the SSGs as O(N) representations, we—for the first time—obtain the complete classifications of 1421, 9542, and 56 512 distinct SSGs for collinear (N=1), coplanar (N=2), and noncoplanar (N=3) magnetism, respectively. SSG not only fully characterizes the symmetry of spin degrees of freedom, but also gives rise to exotic electronic states, which, in general, form projective representations of magnetic space groups (MSGs). Surprisingly, electronic bands in SSGs exhibit features never seen in MSGs, such as (i) nonsymmorphic SSG Brillouin zone, where SSG operations behave as a glide or screw when acting on momentum, (ii) effective π flux, where translation operators anticommute with each other and yield duplicate bands, (iii) higher-dimensional representations unexplained by MSGs, and (iv) unconventional spin texture on a Fermi surface, which is completely determined by SSGs, independent of Hamiltonian details. To apply our theory, we identify the SSG for each of the 1595 published magnetic structures in the MAGNDATA database on the Bilbao Crystallographic Server. Material examples exhibiting the novel features (i)–(iv) are discussed with emphasis. We also investigate new types of SSG-protected topological electronic states that are unprecedented in MSGs. In particular, we propose a 3D Z2 topological insulator state with a fourfold degenerate Dirac point on the surface and a new scenario of anomalous Z2 helical states that appear on magnetic domain walls. Published by the American Physical Society 2024

Open Access
Relevant