Year
Publisher
Journal
Institution
1
Institution Country
Publication Type
Field Of Study
Topics
Open Access
Language
Filter 1
Year
Publisher
Journal
Institution
1
Institution Country
Publication Type
Field Of Study
Topics
Open Access
Language
Filter 1
Export
Sort by: Relevance
Awake prone positioning in acute hypoxaemic respiratory failure: An international expert guidance

BackgroundAwake prone positioning (APP) of non-intubated patients with acute hypoxaemic respiratory failure (AHRF) has been inconsistently adopted into routine care of patients with COVID-19, likely due to apparent conflicting evidence from recent trials. This short guideline aims to provide evidence-based recommendations for the use of APP in various clinical scenarios. MethodsAn international multidisciplinary panel, assembled for their expertise and representativeness, and supported by a methodologist, performed a systematic literature search, summarized the available evidence derived from randomized clinical trials, and developed recommendations using GRADE (Grading of Recommendations, Assessment, Development, and Evaluation) methodology. ResultsThe panel strongly recommends that APP rather than standard supine care be used in patients with COVID-19 receiving advanced respiratory support (high-flow nasal cannula, continuous positive airway pressure or non-invasive ventilation). Due to lack of evidence from randomized controlled trials, the panel provides no recommendation on the use of APP in patients with COVID-19 supported with conventional oxygen therapy, nor in patients with AHRF due to causes other than COVID-19. ConclusionAPP should be routinely implemented in patients with COVID-19 receiving advanced respiratory support.

Read full abstract
Open Access
Aspergillosis in a colony of Humboldt penguins (Spheniscus humboldti) under managed care: a clinical and environmental investigation in a French zoological park.

AbstractAspergillosis is pervasive in bird populations, especially those under human care. Its management can be critically impacted by exposure to high levels of conidia and by resistance to azole drugs. The fungal contamination in the environment of a Humboldt penguin (Spheniscus humboldti) group, housed in a French zoological park next to numerous large crop fields, was assessed through three serial sessions of surface sampling in nests, in 2018–20: all isolates were counted and characterized by sequencing. When identified as Aspergillus fumigatus, they were systematically screened for resistance mutations in the cyp51A gene and tested for minimal inhibitory concentrations (MICs) determination. At the same time, the clinical incidence of aspergillosis was evaluated in the penguin population by the means of systematic necropsy and mycological investigations. A microsatellite-based analysis tracked the circulation of A. fumigatus strains. Environmental investigations highlighted the substantial increase of the fungal load during the summer season (>12-fold vs. the other timepoints) and a large overrepresentation of species belonging to the Aspergillus section Fumigati, ranging from 22.7 to 94.6% relative prevalence. Only one cryptic species was detected (A. nishimurae), and one isolate exhibited G138S resistance mutation with elevated MICs. The overall incidence of aspergillosis was measured at ∼3.4% case-years, and mostly in juveniles. The analysis of microsatellite polymorphism revealed a high level of genetic diversity among A. fumigatus clinical isolates. In contrast, one environmental strain appeared largely overrepresented during the summer sampling session. In all, the rural location of the zoo did not influence the emergence of resistant strains.Lay summary

Read full abstract
Human proteinase 3 resistance to inhibition extends to alpha-2 macroglobulin.

Polymorphonuclearneutrophils contain at least four serine endopeptidases, namely neutrophilelastase(NE), proteinase 3(PR3), cathepsin G (CatG), and NSP4, which contribute to the regulation of infection and of inflammatory processes. In physiological conditions, endogenous inhibitors including α2-macroglobulin (α2-M), serpins [α1-proteinase inhibitor (α1-PI)], monocyte neutrophil elastase inhibitor (MNEI), α1-antichymotrypsin, and locally produced chelonianins (elafin, SLPI) control excessive proteolytic activity of neutrophilic serine proteinases. In contrast to human NE (hNE), hPR3 is weakly inhibited by α1-PI and MNEI but not by SLPI. α2-M is a large spectrum inhibitor that traps a variety of proteinases in response to cleavage(s) in its bait region. We report here that α2-M was more rapidly processed by hNE than hPR3 or hCatG. This was confirmed by the observation that the association between α2-M and hPR3 is governed by a kass in the ≤105 m-1 ·s-1 range. Since α2-M-trapped proteinases retain peptidase activity, we first predicted the putative cleavage sites within the α2-M bait region (residues 690-728) using kinetic and molecular modeling approaches. We then identified by mass spectrum analysis the cleavage sites of hPR3 in a synthetic peptide spanning the 39-residue bait region of α2-M (39pep-α2-M). Since the 39pep-α2-M peptide and the corresponding bait area in the whole protein do not contain sequences with a high probability of specific cleavage by hPR3 and were indeed only slowly cleaved by hPR3, it can be concluded that α2-M is a poor inhibitor of hPR3. The resistance of hPR3 to inhibition by endogenous inhibitors explains at least in part its role in tissue injury during chronic inflammatory diseases and its well-recognized function of major target autoantigen in granulomatosis with polyangiitis.

Read full abstract
Open Access
Tissue kallikrein regulates alveolar macrophage apoptosis early in influenza virus infection.

Host cell proteases are involved in influenza pathogenesis. We examined the role of tissue kallikrein 1 (KLK1) by comparing wild-type (WT) and KLK1-deficient mice infected with influenza H3N2 virus. The levels of KLK1 in lung tissue and in bronchoalveolar lavage (BAL) fluid increased substantially during infection. KLK1 did not promote virus infectivity despite its trypsin-like activity, but it did decrease the initial virus load. We examined two cell types involved in the early control of pathogen infections, alveolar macrophages (AMs) and natural killer (NK) cells to learn more about the antiviral action of KLK1. Inactivating the Klk1 gene or treating WT mice with an anti-KLK1 monoclonal antibody to remove KLK1 activity accelerated the initial virus-induced apoptotic depletion of AMs. Intranasal instillation of deficient mice with recombinant KLK1 (rKLK1) reversed the phenotype. The levels of granulocyte-macrophage colony-stimulating factor in infected BAL fluid were significantly lower in KLK1-deficient mice than in WT mice. Treating lung epithelial cells with rKLK1 increased secretion of this factor known to enhance AM resistance to pathogen-induced apoptosis. The recruitment of NK cells to the air spaces peaked 3 days after infection in WT mice but not in KLK1-deficient mice, as did increases in several NK-attracting chemokines (CCL2, CCL3, CCL5, and CXCL10) in BAL. Chronic obstructive pulmonary disease (COPD) patients are highly susceptible to viral infection, and we observed that the KLK1 mRNA levels decreased with increasing COPD severity. Our findings indicate that KLK1 intervenes early in the antiviral defense modulating the severity of influenza infection. Decreased KLK1 expression in COPD patients could contribute to the worsening of influenza.

Read full abstract
Open Access
Evaluation of a flexible bronchoscope prototype designed for bronchoscopy during mechanical ventilation: a proof-of-concept study.

Bronchoscopy during mechanical ventilation of patients' lungs significantly affects ventilation because of partial obstruction of the tracheal tube, and may thus be omitted in the most severely ill patients. It has not previously been possible to reduce the external diameter of the bronchoscope without reducing the diameter of the suction channel, thus reducing the suctioning capacity of the device. We believed that a better-designed bronchoscope could improve the safety of bronchoscopy in patients whose lungs were ventilated. We designed a flexible bronchoscope prototype with a drumstick-shaped head consisting of a long, thin proximal portion; a short and large distal portion for camera docking; and a large suction channel throughout the length of the device. The aims of our study were to test the impact of our prototype on mechanical ventilation when inserted into the tracheal tube, and to assess suctioning capacity. We first tested the efficiency of the suction channel, and demonstrated that the suction flow of the prototype was similar to that of conventional adult bronchoscopes. We next evaluated the consequences of bronchoscopy when using the prototype on minute ventilation and intrathoracic pressures during mechanical ventilation: firstly, in vitro using a breathing simulator; and secondly, in vivo using a porcine model of pulmonary ventilation. The insertion of adult bronchoscopes into the tracheal tube immediately impaired the protective ventilation strategy employed, whereas the prototype preserved it. For the first time, we have developed an innovative flexible bronchoscope designed for bronchoscopy during invasive mechanical ventilation, that both preserved the protective ventilation strategy, and enabled efficient suction flow.

Read full abstract
Open Access
Effect of formulation on the stability and aerosol performance of a nebulized antibody

Most monoclonal antibodies (mAbs) are administered to patients intravenously to ensure high bioavailability as rapidly as possible. The airways, however, are an attractive delivery route for mAbs for the treatment of lung diseases, making it possible to increase their concentration in the target organ while limiting their systemic passage. Several challenges must be overcome for translation into clinical practice. For example, the drug and device must be paired for the efficient and reliable deposition of a pharmacologically active and safe mAb in the lung region of interest. Mesh nebulizers appear to be the most effective aerosol-producing devices for delivering large amounts of biopharmaceutical while limiting protein instability during nebulization. We used metrological and analytic methods to analyze the effect of both antibody concentration and surfactant addition on aerosol performance and antibody integrity. These two factors had a limited effect on aerosol performance, but affected antibody aggregation. The addition of surfactants to antibody formulations at concentrations appropriate for lung administration markedly reduced the formation of medium or large aggregates, as shown by dynamic light scattering and fluorescence microscopy. Aggregation was also dependent on the type of mesh nebulizer, highlighting the need to optimize drug and device together.

Read full abstract